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ANNOTATION
This monograph classifies the theoretical investigations of
the influence of suction of a fluid through the permeable surface
of a body on the characteristics of a laminar boundary layer and
the aerodynamic drag. The case of an incompressible fluid is studied.
Tﬂis monograph is intended for engineers, scientists, students
and graduate students who are concerned with the technical applica-

tions of boundary layer theory in aviation, ship building and power

machine construction. Editor-in-chief: V.M. Ivchenko.
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FOREWORD

The boundary layer theory was created more than 60 years ago.
At the present time it is widely used by scientists and engineers
in aviation, ship building and power machine construction. The
well-known monographs of L.G. Loytsyanskiy [44] and G. Schlichting
[55], in which basic attention was paid to investigations of the
boundary layer on an impermeable surface, were devoted to a gener-
alization of the boundary layer theory.

In recent times considerable attention has been paid to the
development and refinement of particular problems of control of
the boundary layer. In the present monograph an attempt has been
made to systematically discuss the theory of control of the laminar
boundary layer by means of suction of a fluid through the permeable
surface of a body. One of the reasons for writing this monograph
is the fact that almost all investigations on the theory of the
laminar boundary layer in the presence of sucticn have been published
in periodicals and have not been classified. In this monograph we
loock at the boundary layer of an incompressible fluid. The selec-
tion of materials for this monograph has been due to some degree to
the scientific interest of the author.

The first chapter 1is devoted to deriving basic differential
equations and obtaining the boundary conditions which take into
account the specifics of this problem, i.e., the presence of suction
of small amounts of fluid from the boundary layer throughout the
permeable surface of a body. Furthermore in the same chapter the
derivation is given for the integral relationships which have found
wide use in the development of approximate methods for computing
the boundary layer.

In the second chapter we discuss the available precise solu-
tions to the equations of the laminar boundary layer in the presence
of suction. The precise solutions are represented in the form of
converging series or detailed tables obtained by using a computer.
We studied especially the case which is of practical interest of the
intensive suction of a laminar boundary layer.

In the theory of a laminar boundary layer any correctly formu-
lated problem may be solved by numerical methods. However the
qualitatively visible approximate analytical solutions are also
important. In this respect Chapter 3 of the monograph is devoted



to approximate methods of computing a plane boundary layer. Here
the well-known approximate methods are given that are based on the
integral relationship of impulses, energy and "three moments'", and
also the approximate methods of Shvets and Targ.

Chapter 4 is devoted to the problem of spatial boundary layer
on a movable wing, and also on a body of revolution and of prolate
bodies of arbitrary shape.

Chapter 5 is devoted to a problem that is of practical inter-
est, 1.e., a discussion of the existing methods of computing the
laminar boundary layer with slotted suction. Here the methods of
Wuest and Lachmann are studied. 1In conclusion of this chapter a
simple approximate method of computation is given.

In the last, the sixth, chapter the basic problems of optimal
suction of a laminar boundary layer are studied for the purpose of
substantially reducing the resistance of bodies moving at high velo-
cities. This problem is discussed not only from the position of
the theory of hydrodynamic stability but also from the position of
the conversion of the laminar boundary layer into a turbulent layer,
taking into account the Initial turbulence of the flow and the
roughness of the surface of the body. Such an approach permits
developing the methods of computing the optimal suction of a laminar
boundary layer taking into account the basic factors encountered in
technical applications.

It is not possible to cite a complete bibliography on the pro-
blem of suction of a laminar boundary layer. Therefore this book
includes only a summary of the literature with which the author is
sufficiently familiar and to which references are cited in the text.

Examples of the possible practical application of these ques-

tions have not been reflected in the monograph. To some degree
the articles by the author [26,35] have been devoted to this purpose.
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CHAPTER 1

DIFFERENTIAL PRANDTL EQUATIONS. INTEGRAL RELATIONSHIPS
AND BOUNDARY CONDITIONS. '

Deriving the Prandtl Equations. Basic Initial
and Boundary Conditians

The steady isothermal flow of a viscous incompressible fluid /5%
in the absence of mass forces is described by the Navier-Stokes
equations which in a rectangular system of coordinates have the

form [47]
Q%+w%+w%+w%=—%+ww
Q%+w%+w%¢w%=—%+ww (1.1)
o+l + @l i =~ b idw. |

Here ¢ is the time; u, v and w are the projections of the velocity
vector on the corresponding coordinate axes; p 1s the pressure; o
and p are the density and the dynamic coefficient of viscosity of
the fluid; the operator A 02 + & 4 e
© 2 the op TeTmT AT s

It is necessary to associate the equation of discontinuity with
these equations

ou oOv A ow
ntyte =" (1.2)

Systems (1.1) and (1.2) consist of nonlinear differential equa-
tions in partial derivatives having a rather complex form. In final

- - I - - - - [

w

Numbers in the margin indicate pagination in the foreign text.



form this system may be integrated only in a comparatively small

number of particular cases. Development of the theory of motion of /6
a viscous fluid has occurred mainly by the use of approximate methods
of integrating the equations.

The equations of motion of a viscous fluid in mathematical form
express the equilibrium of the forces of pressure and inertia as
well as the forces of internal friction. If it is completely impos-
sible to integrate the equations of motion of a viscous fluid, then
in the process of developing approximate methods we can discard the
value of one, l1.e., the least important, of these forces. The
significance of the forces of pressure can never be discarded since
these are the internal forces by means of which the equilibrium of
all the other forces is accomplished. If we ignore the forces of
internal friction and take into account the forces of inertia we
obtain the equation of the hydrodynamics of an ideal liquid. If we
discard the forces of inertia and retain the forces of friction we
arrive at equations of motion of a fluid with a high viscosity.

However, many fluids with the motion of which we are often
concerned in solving practical problems have a very low viscosity.
Such for example are water and air. If simultaneously the charac-
teristic dimension of a streamlined body and a value of the rate of
flow are high, we then obtain a flow with large Reynolds numbers.
In such cases, as experiment shows, the influence of viscosity is
expressed only near the surface of the streamlined body. This fact
was noted as long ago as 1880 by D.I. Mendeleyev in his investiga-
tions which were devoted to the problem of resistance to the motion
of liquids.

The influence of viscosity near the surface is substantial for
the same reason that even liquids with an insignificant viscosity
retain the property to adhere to a solid streamlined surface. In
proportion to this distance from the surface the rate of motion of
a fluid rapidly increases and at a certain distance 6 from the sur-
face assumes a value which is practically equal to the rate of ex-

ternal flow. This layer having a thickness 6 in which the speed
of the liquid near the surface of the body varies from zero to the
speed of the external flow is called the boundary layer. The con-

cept of a boundary layer was used by Zhukovskiy in reference [7]
published in 1890. However, only Prandtl [89] in 1904 was able to
formulate the basic differential equation of a fluid motion in the
boundary layer. Prandtl proposed the mathematical theory of the
boundary layer which was later found to be very fruitful and which
received practical application in solving numerous problems intro-
duced in such important fields of technology as airplane construc-
tion, ship building and power machine construction.

Let us derive equations of the laminar boundary layer for a /7
steady flow on a plane surface. The axis x is directed along the
surface and the axis y perpendicular to it. Using the above-men-
tioned assumption, the Navier-Stokes equations (1.1) and the



equation of discontinuity (1.2) can be significantly simplified
and reduced to the form

o , O __.0p

Qua;'§005§='-3;<bHAw

& o a

wa¢w@=—a—z+uz&m (1.3)

u  dv
a—x"'@ao,

&

where the operator A s -—

&ﬂ"éﬁ

Let us assume that the boundary layer with a thickness § is a
layer in which the gradient of velocities 3u/dy is large and the
longitudinal component of the velocity u increases rapidly from
zero on the surface of the speed of the external flow U(x), deter-
mined from the solution to the respective equations of motion of an
ideal fluid or experimentally. Let us also assume that the thick-
ness of the boundary layer is much smaller than the characteristic
dimension of the body L(S§ << L).

Let Up be the chracteristic rate of the external flow. TFrom
the equation of discontinuity of the system (1.3) it follows that
for a plane flow

oy ox L) (1.4)
The designation 0 represents the order of magnitude. Term by term

integration of expression (1l.4) across the boundary layer from y =
0 to y = 8§ yields the following equation

Uy
*-(7)

Consequently, on the outer boundary of the boundary layer the lat-
eral component of the velocity is a small value in comparison with
the longitudinal component.

Let us compute the terms in the equations of system (1.3). In

this case the derivative of the arbitrary function F over x is much
smaller then the respective derivative of y. In fact,

2 o(5)s Z=o(E).



Consequently the terms of the first and second equation of system
(1.3) have the following order:

ou ou dp H
“ar Yoy O(T")= (1.5)
. U,
o o(‘ﬁ)‘ (1.8)
Pu °
b o2 0(7?)‘ (1.7)

/8

Let us note that the terms of equation (1.5) can be physically inter-
preted as the forces of inertia and terms of equation (1.6) as forces

of viscosity per unit volume of the boundary layer. If we assume
that the forces of viscosity in the boundary layer have the same
order as the inertial forces we can estimate the thickness of the

boundary layer

2
U b b
0(-T°)=0(p'—6;0) or TnO(Re 2), (1.8)
UoL
where Re = 5 is the Reynolds number.

In the first equation of system (1.3) i1f we discard the terms
of the second order of smallness for the plane boundary layer with
steady motion we find Prandtl's differential equation

ou ou 0 Fu
Q”5§+9”5§='5Lx’+“¢§?’ (1.9)

Similarly we can compute the terms of the second equation of

system (1.3). It is obvious that they have the same order
ng’ '@vg-;" O(Q‘Uzég)=°(g%%'f6); (1.10)
pg%: 0(’%9‘%); (1.11)
v () (112

In the second equation of system (1.3) if we discard terms of
the second order of smallness, We obtain



) X
a—z-o(qf_—]i'z—) (1.13)

In other words the gradient of pressure 3p/dy 1is a small value and
the change in the pressure across the boundary laver which has the

L L
(1.3) is simplified and reduced to the form

2
order o(gﬁui) can be ignored. Then the second equation of system

Pixg) =P (1.14)

Equation (1.14) has a trivial solution if in the Equation (1.9) y
tends to infinity:

V=g (1.15)

Consequently, in this case the pressure is fully determined by the
rate of the external flow, its longitudinal derivative and the dens-
ity of the fluid.

Analogously we can compute the terms of the third equation of
system (1.1). If we also take into account that the time has the
order O(ﬁéd, the system of differential equations of a laminary

0

spatial boundary layer and the equation of discontinuity with steady
motion take the form

Ou _ . Ou Ou ou . 1 0p %
A RS A Y AT
ow Q@ ow Ow 1 6p 0%
IR Al R T (1.18)
ap ou  dv  ow ,
1

This system of equations in the presence of suction of a fluid
from the boundary layer must be solved with the following boundary
conditions:

U=w=0; V=2 = 0,(%, {) with §y = 0;
u>U, va>Vy w-Wyithy - co. (1.17)

Here ug(x,t) is the local rate of suction of the liquid from the
boundary layer; U, V and W are the longitudinal, lateral and trans-
verse components of the velocity at the outer boundary of the



boundary layer. In the case of steady motion, we must bear in mind
the initial conditions: when £ = 0 the function u must be reduced

to a given function of x and y.

In the first two equations of system (1.16) the value of the
pressure may be excluded by using the Bernoulli integral which is
used on the outer boundary of the boundary layer:

1

Supplementary Boundary Conditions on the Surface of
a Body and the External Boundary of the Layer

There is no general method of solving the system of equations
(1.16) with satisfaction of the initial and the boundary conditions
(1.17). In recent times, considerable significance has been given
to the approximate methods of computation based on the concept of
the boundary layer of a finite thickness. In this case along with
the basic boundary conditions (1.17) the supplementary boundary
conditions are used for the velocities on the surface of a body and
at the outer boundary of the boundary layer.

Let us explain the derivation of the above-mentioned boundary
conditions. As it has already been noted [see the first boundary
condition (1.17)]1 that for a boundary layer on the surface of a
body (when y = 0) the conditions of adhesion (u = w = 0) and the
presence of a normal component [rate of suction v = -vy(x)] must
be satisfied. TFrom the concept of a layer of finite thickness it
follows that at the external boundary the speed of the fluid in it
(when y = 6) is equal to the rate of the external flow (u = U). Let
us also note that at the outer boundary of the boundary layer v #
0, i.e., the boundary of the boundary layer is not the line or the
surface of the current. The requirement for smoothness in transi-
tion of the velocity in the boundary layer to the velocity of the

external flow leads to satisfaction of the conditions when y = §:

. Ou Fu du
u="U, 'a;=5—y2=..-=5?=...=0(k.—l,2...oo). (1.19)

In fact no outer boundary of the boundary layer exists and the above
boundary condition must be satisfied asymptotically, i.e., when y -

a .

Let us look at the derivation of the other boundary conditions /11

on the surface of a body for a plane boundary layer. Assuming in
equation (1.9) that y = 0, we obtain [if u = 0, v = -vy(x)]
ou I dp 0%
-"o(a-y).—"‘ga—x"”(@,- (1.20)
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This condition connects the value of the second derivative of the
velocity on the surface of a body with a gradient of pressures on
the outer boundary of a boundary layer and the value of the rate of
suction.

After differentiating again the left and right sides of this
equation over y we obtain

ou Ou Fu Ov Ou , Pu Fu
woaxt Gy Ty g Tl e (1.21)

Let us note that from the equation of discontinuity of system (1.3)
it follows that

Ou do
x= "oy (1.22)

If we substitute equation (1.22) into equatiocn (1.21) this latter
equation is simplified and takes the form

lt@u‘$ u vQ?
axoy T Vap T o (1.23)

On the surface of the body when y = 0 from equation (1.23) we find

a new boundary condition
o d%u v @u
(1 ayZ. ayao (1.2’4)

This condition connects the second and third derivatives of the
arbitrary component of velocity in the boundary layer with the value
of the velocity of suction on the surface of the body.

Analogously we can ©obtain an infinite set of boundary condi-
tions both on the surface of the body and at the external boundary
of the boundary layer for the components of the velocities u and v.
Below we cite the basic boundary conditions which were used in the
existing approximate methods of computation:

with =0 t=w=0; U= =1py(x)

~
=
N

|

ey (T _ gu\,

w +v(ay’)o_ v°(x)(3y)' (1.25)
Fu) i A

(@, =@ (5),
% dv

(@) = e (),

().~ —=(E) 7



withy—+5
u—- U,

au
a =s..=
v
oy

vV, g—? .=0. (1.26)

The rate of suction vg(x) may be distributed across the entire
surface or panels or concentrated in narrow diagonal slots. Figure
1 gives a schematic classification of the methods of organizing
receiving organs of suction systems which exist in engineering
technology.

With distributed suction of the liquid from the boundary layer
through the permeable surface of the body (Fig. la) the rate of
suction is continuous and not equal to the zeroc of the functions
(vg # 0). With panel suction of the liquid from the boundary layer
through the permeable panels (Fig. 1b) the rate of suction

Uo(x) # Owithx, € x < x;
Uo(x)EOWi'thxl >XxXH x>z,

where x#; and x, are the coordinates of the beginning and the end of
the permeable panel. With suction of the liquid from the boundary
layer through narrow diagonal slots (Fig. lc), in the region of the
slots the rate of suction is not equal to zero (vy # 0), and on the
remaining nonpermeable surface, the normal velocity component (rate
of suction) is identically equal to zero.

The classification used is quite arbitrary; however, it is
useful in developing engineering methods for computing the charac-
teristics of a boundary layer in the presence of suction of a fluid
through the permeable surface of a body.

Relationships Between Impulses and Energy for a
Plane Boundary Layer. Generalized Integral Relationships

For an approximate computation of the characteristics of a
laminar boundary layer on a porous surface in the presence of suc-
tion, methods have been developed which are based on the use of
integral relationships obtained by conversion of the system of
Prandtl's differential equations.

~
]
o

Let us derive the equation of impulses. For a steady plane
incompressible flow in a laminar boundary layer let us rewrite the
the differential equation (1.9) and the equation of discontinuity

in the form

au ou. 1 dp o (1.27)
o ¥ =~ &x T o




k

3
B

o Yy =0 (1.28)

Let us multiply both sides of
equation (1.27) by u and after
term by term addition with equa-
tion (1.28) we obtain

u , 0 a. , &u
2‘..67+Ty-(u0)-u-ix—+\73?"- (1.29)

Here we take into account that from
X, the Bernoulli equation applied to
the flow on the extermal boundary
of the boundary layer it follows
that

Xy

Vp(x) I dp w
b v E=Vg- (1.30)

Then we convert equation (1.29)
to the form

du
| | — U= Ut S =vTE (131
Fig. 1. Schematic of the
Suction of a Boundary Layer.
and term by term integration of y
from 0 to oo we obtain

—J-a-x—-(u2._u’)dy+Ju-a%dy¢000==—%. (1.32)

With the ultimate derivation of equation (1.32) we have taken
into account the boundary conditions

with Ym0 u=0 o=y
with y=oc0 u=U.

In these transformations we also use Newton's law

To = Ou
o™= E)yd’

where 19 is the local tangential stress on the surface of the body
and the equation of discontinuity in the form




Since, from the equation of discontinuity (1.28) it follows that

3V _ du

3y - —55 »then equation (1.32) can be written as

d d 1.33
._?;[Ul(st* ¢6*)]$U'E[U6*]+Uvo==%—, ( )

o
.. u lc__y_ d
where 0%*= 72 vV ]% is the thickness of loss of the impulse;

b--J\(l —-—g)dy-x- is the thickness of the displacement.

After differentiation and transformation of equation (1.33)
in final form we obtain

¥ du &** 0, T
%4‘717"‘71“‘”4‘2”"170"?00—"' (1.34)

Equation (1.34) is the equation of impulses for the boundary
layer. It may also be obtained by applying the law of momentum to
the element of the boundary layer on a porous surface in the presence

of suction.

In the particular case of a boundary layer on an impermeable
surface (vgy = 0), equation (1.34) agrees with the integral relation-

ship of Karman in the form in which it was first obtained by G.
Holstein and T. Bohlen [75].

Let us proceed to deriving the equation of energy for the bound-

ary layer. Adding the term % (%% + %5) to the right-hand side of

equation (1.27) and multiplying it by u we obtain

3u® Ou
at Ty W G = (1-35)
If we integrate equation (1.35) over y from 0 to oo, since 16

" [ ou du |®
[u’v]. '-==U2 vo @rja_xdy » [U?!/-'J. -0.
[ ]

10



we obtain

(1.36)
o0 au ~
=—J‘V(W) dy.
Let us convert equation (1.36) to the form
ey m [ v (2 g — o,
dx oy (1.37)

<o
where Gn*==g{}[|__(17)]dy is the thickness of the energy loss.
¢

The equation of energy (1.37) may also be obtained by applying
the law of conservation of energy to the element of the boundary
layer on a porous surface in the presence of suction. The equation
of energy for the case of an impermeable surface (vg = 0) was first
obtained in 1935 by Leyvenzon [39]. Abroad the equation of energy
became known only in 1948 after publication of the work of Weighardt
[122].

In order to obtain more general integral relationships for the
boundary layer [128], let us multiply equation (1.27) by uK and
k+1

equation (1.28) by %—:—I, where kK = 0, 1, 2,.... If we add these

expressions we obtain

0 d otu
W(uh+2)'4‘r§y—(“k+l")=“h(k¢l)( dx+v6’) (1.38)

In deriving equation (1.38) it was taken into account that /17

D W=k D

9 » Ou .+1ﬁl
—ﬂ(a V)= (k4 l)ou 6y+u 3

11



Substituting equation (1.28) into expression (1.38) and term by
term integration over y .from O to o in general form we obtain the
integral relationships for a plane boundary layer

1 d |, g2 1 aU O
@ DYeg gty =k (1.39)

where

are generalized integral thicknesses of the boundary layer.

If we assume in equation (1.39) that k¥ = 0 and kK = 1 we obtain
respectively the equations of impulses and energy. For k > 1 this
equation has no obvious physical interpretation.

For the particular case of an impermeable surface (vy = 0) the
generalized integral relationship (1.39) was obtained by Golubev
and first published in monograph [47].

Relationship of Impulses and Energy for a /18
Spatial Boundary lLayer

The relationship of impulses for a spatial boundary layer can
be derived from the physical arguments using the law of the con-
servation of the momentum for the element of the spatial boundary
layer on a porous surface in the presence of suction [33].

Let us look at the element of spatial boundary layer on the
porous surface of a body (Fig. 2) using a natural curvilinear sys-
tem of coordinates. The x-axis is directed along the line of the
current of the potential streamlining of the body, the y-axis per-
pendicular to the surface of the body and the z-axis along the line
orthogonal to the line of the current in the plane adjacent to the
surface of the body.

Let us choose on an arbitrary line of the current a certailn
point 1" which is found at a distance x from the critigal and let us
draw through it two normals to the line of the current. The first

12



normal z is drawn in a plane tangent to the surface of the body up
to intersection with the neighboring line of the current, and the
second perpendicular to the tangential plane up to intersection with
the outer boundary of the boundary layer. Let us denote this branch
cut of the first normals by Az and the branch cut of the second
(thickness of the boundary layer) as §. At the point of intersec-
tion of the normal z with a neighboring line of current at a dis-
tance Az (point 2) let us establish the second normal to the sur-
face of the body up to intersection with the outer boundary of the
boundary layer. This branch cut will differ from § by an infinitely
small value. Let us give the increment to coordinate x equal to

dx, and at points 5 and 6 let us make the same geometric construc-
tions as at point 1.

As a result of such a plotting we obtain a curvilinear unit
volume bounded by the permeable surface of the body 1265, for the
surface of the outer boundary of the boundary layer 4378, by two
surfaces of the current 1485 and 2376 and by the two surfaces 1234
and 5678 (cross sections A and B), normal to the surface of the
current.

Let us supply to the constructed curvilinear element of the
spatial boundary layer the general law of variation and momentum
similar to that done by Karman [80] for the particular case of a
plane boundary layer forming on the profile with an impermeable sur-
face.

From the law of momentum it follows that variation of the momen-
tum of a fluid per given volume is equal to the impulse of all
external forces applied to this fluid. For steady flow per inter-

val of time dt the change in the momentum of this fluid occupying /19
at the beginning of this segment of time the spatial volume 12345678,

is composed of two values.

(1) For this period of time a certain amount of the fluid com-
prising the volume at the beginning
of the interval flows from the
limits of this volume. The momen-
tum of the particles of this part
of the fluid will be assumed to be
a positive value. Then the corres-
ponding value for the particles of
the fluid flowing for the time dt¢
into the volume must be assumed to
be negative and equal to the momen-
tum carried through the walls of
the spatial element.

Fig. 2. Element of the

Spatial Boundary Layer on For the interval of time dt
a Porous Surface in the through the plane 4 (see Fig. 2)
Presence of Suction. the momentum of the liquid is

[}
carried which is equal to —;dnﬁygﬂAnw’
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8
and through the plane B equal to QﬂjgmAﬂW) . Finally, through

the planes 4 and B the momentum of the fluid is carried which is
equal to

[]
0
dxdt — | ou?Azdy.
&.[w Y (1.40)
]

It is also obvious that through the planes A4 and B an amount /20
of fluid flows

[]
d
dxdt ~— s‘gqud .
axa v (1.481)

(2) As a result of the fact that the surface of this body is
principle the amount of fluid flowing through its permeable surface
1256 for the same period of time is equal to

Azdxdt,
o (1.42)

where vg(x,2) is a local velocity of suction of the liquid through
the permeable surface of the body.

The total amount of fluid flowing from this element of a spa-
tial boundary layer is equal to

o

a
dxdt — \ ouAzd dxdtou,Az.
axbs.Q Y + QUo (1.43)

From the condition of discontinuity it follows that the same
amount of fluid determined by formula (1.43) must flow through the
surface 3487. It is obvious that on this surface the Equation u =
U is wvalid since at the outer boundary of the boundary layer when
y = 8 (x,2) the velocity u is converted into the velocity of the
external potential flow. Consequently, through the surface 3487

momentum flows that is equal to

ox

0

)
—oU 9 Jl uMzdydxdt 4 vyAzdxdt |,
(1.uy)

and the total change in the momentum in this fluid corresponds to

1y



( ? 3
Q\—aax— g u*Azdy — U —% S uAzdy 4+ vUAz | dxdt.
b

(1.45)

Now let us proceed to a computation of the impulse of the exter-
nal forces. Since the force of friction, the value of which per
unit of area is equal to Ty, operates on the plane 1265, the impulse
of the forces of friction is equal to - TogdxAzdt. At the same time /21
the sum of the projections on the x-axis of the forces of pressure

applied to the planes 4, B and C is equal to —GggdxAz. Then for

the impulse of these forces we can write

.9
—todxAzdt—-ﬁ—a%dxAzdt. (1.16)

If we equate the change in the momentum (1.45) computed earlier
to the total impulse of all forces (1.46) we find the integral re-
lationship of impulses for the spatial boundary layer:

)
dx‘}'u’Az(y)dy—U——Jqu(y)dyﬁ- -

(1.47)

! dp T,
= — — et AZ () § — — Az (Y).
s MW~ 2 M)

Let us assume that the thickness of the boundary layer at a
given point is negligibly small in comparison with the radius of the
lateral curvature of the surface of the body. 1In this case we may
assume that Az does not depend on the coordinate y. Then the left-
hand side of equation (1.47) can be converted to the form

—\ wrdy — Az dy + Us 882
))Auy : ‘S‘uy+ dx$u (1.48)

If we use the Bernoulli theorem for the external potential flow we
obtain

~1.d _, U
o dx dx * (1.19)

In this case equation (1.47) can be somewhat simplified and reduced
to the form

s
d * d dAz du T

i dy o ‘__‘ v = U= ——2 (1.50)
do udy - U 7 udy ¢ U* I 4, u I P
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Let us look at particular cases of eqguation (1.50).

For the axisymmetric boundary layer on a body of revolution /22
with a porous surface in the presence of suction

~ Az =r,(x) AG,

where rg(x) is the instantaneous radius of the body of revolution
and A8 = const is the angle between the two planes which pass through
the axis of symmetry of the body of revolution.

In this case the integral relationship of impulses (1.50) can
be simplified and reduced to the form [17]:

B [
d d dry 1 v du
— | utdy — U — \ ud peZe 4 % _ pEY s T
dxj y dx_s TRtV a4 (1.51)
0
For a plane boundary layer
Az = const

and the integral relationship of the impulses (1.50) is reduced to
the form

(1.52)

obtained by Prandtl [u46].

Just as the relationship of impulses, the relationship of energy
for the spatial boundary layer can be derived from the physical
argument using the law of the conservation of energy for the spatial
boundary layer on a porous surface in the presence of suction [36].

Let us apply to the volume of the liquid included in the cur-
vilinear element of the spatial boundary layer (see Fig. 2) the
general law of the conservation of energy, taking into account suc-
tion of the fluid through the porous surface of the body. Let us
look at the case of a steady flow and an incompressible fluid. If
we compute the kinetic energy of the fluid for this element of the

boundary layer, we obtain

[]
1

Te dx | — ou*Azdy.
jz"" Yy (1.53)
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In deriving expression (1.53) it was assumed that the lateral com-
ponent of the velocity in the boundary layer is negligibly small
in comparison with the longitudinal component.

For a certain interval of time df the change in the kinetic /23
energy of the fluid occupying at the beginning of this interval of
time the spatial volume 12345678 consists of three terms: the kinetic

§
energy dt I % p u?ulzdy, flowing through plane B; the kinetic energy
) Q
dt I %—puzqudy, flowing through plane A and the kinetic energy
0 8

2
flowing through the surface 3478, dtdx %—-I pubzdy. This latter

0
expression is valid since for this surface, it being an external
boundary of the boundary layer, the velocity u converts to the velo-
city of the external potential flow U.

Since the surface 1265 of the body 1s permeable, then the amount
of fluid flowing for the time dt through the surface is equal to

oUoAzdxdt,

where v,(x,2) is the local rate of suction of the fluid through the
permeable surface. For the kinetic energy of the sucked-off fluid
we obtain

QU Azt
The total change in the kinetic energy of this system is
d 6l U d :
- 2L outazdy U4 LAy 1.54
dT = dxdi( P 5 3 o Azdy T dx \s‘Qqudy 43 uoUtA2). ( )
9

Let us proceed to computation of the works of external forces
cn the control surface of the spatial element of the boundary layer.
The operation of the forces of viscosity on the surface of the body
is equal to zero as a result of the adhesion of the fluid to the
surface. On the other parts of the control surface we can ignore
the operation of the forces of viscosity.

Operation of the forces of pressure on the surfaces of the
element of the boundary layer for the time d¢ is expressed by the
integral

M=”ssjpv"dadt' (1.55)
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where v, is a projection of the velocity on the outer normal to the /24
control surface; p is the pressure; S is the control surface.

Using the well-known formula of Ostrogradskiy-Gauss, the surface
integral (1.55) can be converted into a volume integral

Opw

where v and w are the projections of veloéity in the boundary layer
respectively on the axes y and 2; V is the volume of the element of
the boundary layer bounded by the control surface S.

Furthermore,

opu , Opv . Opw ou ov ow
o T oy az (ax'*'ay"'az)"’
ap op (1.57)
+ u‘+a v+7az—w.

Since the fluid is incompressible, the first term in expression (1.57)
is then equal to zero. Along with this on the differential equations
of Prandtl we know that in the region of the boundary layer %5-: 0
(1.16). The selected system of coordinates directed along the lines
of the current permit setting w = 0. Therefore the work of the forces

of pressure

dA—_dzﬁfﬁ’ludv dtdxa qudy.

(1.58)

The energy of the forces applied to the particles of the viscous
fluid diverge by the increase of kinetic energy of these particles
and is partially dissipated, being converted into heat energy. If
we ignore the small terms of higher order for the function of dis-

sipation [47], we obtain

ou )"

E'ep(—a-!-l- (1.59)

Then for the time d# and this volume of liquid the dissipating amount
of energy

]

dB==dij‘j‘j ( )dV dtde (’a_) Azdy, (1.60)
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According to the law of the conservation of energy 25

dT = dA —dB,
(1.61)

and assuming that Az does not depend on the coordinate y, and taking
into account expressions (1.54), (1.58) and (1.60) we obtain

)3 -0
d 1, 1,, d
dtd.xzx—,AzJ?gudye—dtdx—é-U‘aAzjQudy¢
\ 8 (1.62)
+ Lovtrzdrdt = — didxnz 2P (udy — ataxaz (uf 2 \a
2 0 dx y l" ay y'
[] []

By differentiating the first two terms of equation (1.62) and
after dividing both sides of this equation by dtdaxAz we find

(1.63)

For the particular case of a plane boundary layer on an imperme-
able surface of a body, i.e., in the case when Az = const and vg = 0,
the integral relationship of the energy (1.63) for the boundary layer
was first obtained by Leyvenzon [39] in 1935. Apparently in spite
of this in 1948 this relationship was obtained abroad by Weighardt
[122], in the following form:

[ [}

1 Uz i %
s‘?gu’dy~—§—59“dy=”'§'w35* , (1.64)
)

4 s
where o= {21 (7)1 is tnhe thick
U U is the thickness of the energy loss.
°

Using expressions (1.15) and (1.64) let us derive the integral 26
relationship of energy (1.63) for the spatial boundary layer on a
porous surface of a body in the presence of suction to a final form:
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[
1 dAz Ou \*
(U"‘G*") var T (U%**¥) = 2vj‘ (?y—) dy <+ vU3, (1.65)
RN

where v = g is the kinematic coefficient of viscosity of the fluid.
Let us loock at the particular case of equation (1.65).

For the axisymmetric boundary layer on a body of revolution
with a porous surface in the presence of suction

Az = fo(X) AO.

In this case the integral energy relationship (1.65) is simplified
and reduced to the form

3 .
—(U’(’i***) l d.ro (U’G***) a 2v5 (-guy—)’ dy 4 v U3,
(1.66)

For an impermeable surface (vg = 0) equation (1.66) was obtained by
Truckenbrodt [116].

For a plane boundary layer
Az = const

and the integral energy relationship (1.65) is reduced to the form

] Bu 1t
2 (/3% *%) = ket 3
R 2”5(@)@&%0' (1.67)

obtained by Head [73].

Integral Relationships of Moments

L.G. Loytsyanskiy [43] showed that,by using a system of integral
relationship of moments of the basic differential equation of the
boundary layer and using simple families of velocity profiles, it is
possible to develop a satisfactory method for integrating equations
of the laminar boundary layer on an impermeable surface. Let us derive
the integral relationships of moment for the equations of a plane /27
laminar boundary layer on a porous surface in the presence of suc-

tion [13].

The system of these equations and the basic boundary conditions
for a steady flow in an incompressible fluid in the absence of volume
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forces has the form of (1.9) and (1.17). Using the equation of dis-
continuity (1.3) equation (1.9) may be given a form which is more
suitable for further computation:

0 . AU —u
—dd;lu(U-—u)l+—‘glv(U—u)l4>U(U—u)-v—((3Tl=°- (1.68)

Let us multiply both sides of the equation (1.68) by yk, where
k =0, 1, 2, 3..., and let us integrate over Yy from 0 to . As a
result of the computations we obtain

%Jy'u(U —u)dy «PSy"-a%lv(U-u)l dy 4

(1.69)
H U )
+U'5‘y*(U—u)dy—vSy'—(a-g'——dy=0.
] e
Equation (1.69) is an integral relationship of moments. In the

future we will assume that the integrals in equation (1.69) will
have finite values.

Let us look at the particular case of equation (1.69) when k =

0:
oo o o L
d , d T
—laU—wydy+ Uy U—wdy 4+ | 5—loU —u)jdy = —.
dx Oy e
] (1.70)
Here the quantity 19 = 1 <%—;i> is the intensity of the friction
=0
on the surface of the streamlined body, since,
a
WIU(U"‘U)]d!I=%U.. (1.71)
Equation (1.70) which represents the equation of impulse can be 28
transformed to the form
ds** | U'§** Ug To
_—— . (24 —_————,
o TU YTy =g (1.72)
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«° o
Here 6*=5(1 —%)dy is the thickness of the displacement; g =5‘%(|_
$

u %
-‘TT)dy'is the thickness of the impulse loss; H = %Egvis the form para-

meter of the boundary layer.

By introducing into study the dimensionless parameters

=5_'"" dU_ 106'"_ tttgv"a.. (1.73)

v dx’ §= w v

and deriving the algebraic transformation, we can reduce equation
(1.72) to the form

d u v
._f=.UTf+T{2§_2[2+H”_2t”}, (1L.74)
where
" o
U=

In the future equation (1.74%) will be called an integral relation-
ship of impulses or the equation of zero moment.

When k = 1,from equation (1.69) we find the equation of the
first moment. In this case we can write

d r 9 T
—d—x—j yuU —u)dy + Sya—ylv(u—u)ldy-—U jy(U=-u)dy=
[ ]

T U — (1.75)
=‘v.sv__(aT£)_dy.

If we compute the second and fourth integrals of equation (1.75),
we obtain

Jy-a%[v(u—-undy=-—J'u(u—u)dy; (1.76) /29
]

r #U—uw
fy (ay’ Lay=v. (1.77)
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Taking formulas (1.76) and (1.77) into account, we can write equa-
tion (1.75) in the form

—Ei— fyu(U—-u)dy—Jv(U-—u)dy +U’J‘y(U—-u)dy=vU.
&

(1.78)
The first integral of equation (1.78)
‘fyu (U — u)dy = HU%**, (1.79)
where
-]
u
Hn=jw(l—¢)dn; n=—ti =@
Noting that
i n_ ds* (1.80)

Fri

from the equation of discontinuity and the boundary condition of the
surface of the body we have

[ 4
Ues — aud '**“ do** ¢
3 Y —vp=U’S j“Pd"l’—U dx J(Pdn—"w —%- (1.81)
0

The second integral from eguation (1.78) taking formula (1.81) into
account can be written as

OH,UU'G**’ — 005«/ — 1) dy =

T da"
S“U-U)dy- Hauzﬁ?* dx
L]

(1.82)

dg**

= HUer S

— HUU'6*** — g,Us*,

where
-

H, "'; " — n‘cpdn)(l — ) dn;
H, =T(f¢dn)(l —@)dn.
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Finally the third integral in the equation is converted to the form

§y(U-—u)dy HUS™, (1.83)

where

H, —jn(l -~ q)dy,

If we substitute integrals (1.79), (1.82) and (1.83) into equa-
tion (1.78) after several transformations we obtain

d dé** !
—(H U"‘ﬁ**z)-H U35+ . H.UU'5*%2 5* o
dx i 2 dx < IU $ 90U + ( 1.8Y4 )
4 HUU'S** o WU.
. §xx2  _ f . - . .
If we substitute = 577 into equation (1.84) we Ffind
_d_)- = ___]____ U [l —~Ht** ~QH, ¢ H <+ Hof -+ "
dx 1 Y 7R =iy s 57 I
(Hl"'?H:) v (1.85)

When & = 2 from equation (1.69) we obtain the equation of the
second moment. In this case

"&i’jy’u(U—u)dy—i’Jyv(U—u)dyéU’Jy’(Ur-u)dy =
’ - (1.86)
-==2v5(U—u)_dy.
It is obvious that 3;
T — — 3
Jy’u(U Wdy = H U W%**% (1.87)
. d&tt
J WU —wydy = HUs* L7 pyyrere_ sy, (1.88)
U —u)dy = US**H,
a( Ve H (1.89)
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where

Hy = ‘f 1'p(l — ) dn;

H, =°j°n(nq>«=-j'mdn) (1 —g)dy;

© n
Hy = Sn(.bf q>dn)(l'-'-tp)dn-
®

Then, taking expressions (1.87)-(1.89) into account after several
transformations of formula (1.86) we find the eguation of the second
moment in the final form

d U 4 o _ 1 Lo

(1.90)

where

Hyg = j'la(l — @) dn.
0
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CHAPTER 2
CERTAIN PRECISE SOLUTIONS OF THE PRANDTL EQUATION
The Boundary Layer on a Plate

For the particular case of longitudinal streamlining of a flat /32
plate, when the longitudinal pressure gradient is equal to zero, i.

e., %5 = 0, the differential equation for the boundary layer (1.9)

and the third equation of system (1.3), the equation of continuity,
can be written in the form

“ox Yoy T Vo

(2.1)
ou O o
ox ¥ dy ’
with the boundary conditions
u=0, v=—y(x) with gy =0;
(2.2)

u—>Uy with y-+co.

A simple solution of system (2.1) in its final form can be
obtained with uniform suction of fluid from the boundary layer (vgy =
const). In this case system (2.1) has a solution first obtained by
Griffith and Meredith [70] for which the velocity distribution in
different sections of the boundary layer is not a function of the

s . . . 9 .
current coordinate x. Since in this case 5% = 0, then it follows

from the equation of continuity of system (2.1) that

v (%, y) = vy = const < 0.

Therefore the first equation of system (2.1) has the form /33
‘o ~ oy
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whose solution will be
w(y) = a1 —exp (° =]
: (2.3)

Figure 3 shows the velocity distribution across the boundary
layer for an asymptotic profile (2.3) with suction and a comparison

i T | Fig. 3. Velocity Distribution Across the

08 L= Boundary Layer of a Longitudinally Stream-~

! Ifzr lined Plate: (1) Is the Asymptotic Pro-

oul 2 file with Uniform Suction; (2) Is the
Velocity Profile Without Suction (Accord-
ing to Blasius).

0 05 16 24 iz 4
of the asymptotic profile with the Blasius profile without suction.
The solution obtained in final form (2.3) i1s also a precise solution
of the entire system of Navier-Stokes equations (1.3).

The displacement thickness, the thickness of the impulse loss

and the tangential stress on the surface can be determined in this
case by simple calculations allowing for expression (2.3):

=5‘(l""——)dy= *-—vvo; P
4]
P (2.1)
u 1 v
R G
]

d
Te= N (?;—;-)y:o = Q(—UOUO)'

The tangential stress 1is a function only of the density of the
fluid and is not a function of its viscosity.

The relationships thus obtained are valid only for longitudinal /34
streamlining of a flat plate with uniform suction beginning at a
certain distance from the leading edge. R. Iglisch [78] pointed out
that, on a plate, the boundary layer reaches an asympotic state after
passing the initial section Tp s determined by the inequality

-4ﬂ]
(__ y' (2.5)

x

The velocity profiles in the initial part, which Iglisch obtained
by numerical integration of system (2.1) (Figure 4), were not affine
to one another. Near the leading edge (£ = 0.1), the veloclity profile
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has a shape similar to the shape of the Blasius profile without

suction, and in proportion to the increase in the parameter £ =

CZE)VQE; approaches the asymptotic.
U, v
l!/‘ e =
W77 _=n
o8 |- Zd -
/ S
/ 87
7

fe) o P~
g %
v,
? ! 2 3 Lkl
Fig. 4. Distribution of Velocities Across the Boundary Layer in the

Accelerating Part of a Flat Plate With Uniform Suction

Table 1 gives the data about the change in the displacement
thickness, the thickness of the impulse loss and the tangential stress
in the initial section of the boundary layer with uniform suction as
a function of the parameter &.

TABLE 1. CHARACTERISTICS OF A LAMINAR BOUNDARY LAYER FOR A LONGITU- /35
DINALLY STREAMLINED PLATE WITH UNIFORM SUCTION.

- Tex | =ugd* | —ued™ & b

"E—“;—:VT. .: v H & ’u[—/_.
0 0 0 2,50 | 0,571
0,0707 0,114/ 0,045 2,53 0,607
0,141 0,211} 0,086 2,47 0,631
0,212 0,303{ 0,125 2,43 0,671
0,283 0.,381{ 0,160 2,39 0,699
0,354 0,450 0,192 2,35 0,726
0,424 0,5111 0,221 2,31 0,750
0.495 0,566 0,248 2,28 0,773
0,566 0,614| 0,273 2,25 0,794
0,636 0,658{ 0,295 2,23 0,813
0,707 0,695{ 0,315 2,21 0,830

co 1 0.5 2,0 1

An approximate solution of this problem was found by Schlichting
[100] and Thwaites [111]. The corresponding experimental investiga-
tions were carried out by Kay [81]. Figure 5 shows the results of
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these experimental investigations and a comparison of their theoret-

ical
1 =T T FT T,
) L1 f
L/ L
a 1) 8
o ’ a 1 o ¢ 1 y.nn
Fig. 5. Comparison of the

Theoretical and Experimental
Profiles of Velocity in a Lami-

nar Boundary Layer in the Pre-
sence of Suction: a - & = 0.77,
v

ﬁ% = 0.00016; b - £ = 0.608,

Y0 - 5.00045; £ = 1.87, 2% =
7, - ° 3 © = 1. C Ty T
0.00078.

of the boundary layer

TABLE 2.

CHARACTERISTICS OF A LAMINAR

computations. The comparison shows a good correlation between

the results of the theoretical
calculations and the experi-
mental data.

The particular case of
longitudinal streamlining of a
flat plate with suction dis-
tributed according to the law

=S} .

where C = const. was investi-
gated by Schlichting and K.
Bussman [102] by numerical in-
tegration of system (2.1). The
curves, plotted as a result of
their calculations of the velo-~
city profiles, are shown in

(2.6)

2

/2
the numberical values of the
fundamental local characteristics

. x
Figure 6 (y = “0/ﬁ§5)° and

are shown in Table 2.

BOUNDARY LAYER FOR A LONGI-

TUDINALLY STREAMLINED PLATE WITH SUCTION ACCORDING TO THE LAW vg~

x—1/2

Y Uex . [Z . Lt o &
U;l/. — ﬁv ;-—1 [} Vi Hg-.;. ll:Up_
0 1,721 0,664 2,59 0,573
0.5 1,303 0,541 2,41 0,682
1 1,047 0,458 2,29 0,763
1.5 0,863 0,390 2,22 0,818
In the above-mentioned reference [102], Schlichting and Bussman
u - — ¥ -
v =1
yez |
45 $=0 ¢
261095
T e -
0 A T
1 2 3 eyl ] ! 2 3 gyl
Fig. 6. Velocity Profiles on a Fig. 7. Velocity Profiles on a
Tlat, Longitudinally Streamlined Flat, Laterally Streamlined Plate.

Plate with Suction Distributed
According to the Law x~1/2,
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also examined the flow near the leading critical point with lateral

streamlining of a flat plate and uniform suction. In this case the /37

longitudinal and lateral components of velocity in the potential _—_
flow are defined by the system

AV
08 N :
. Ux)=ux;, V() =—uy.
04 B R The results of these investigations are
———— v
shown in Figure 7,(Y1= —jb‘ and in
MIA ==
(/) 1 2 =7 V5% v dx
Fig. 8. Velocity Pro- Table 3, respectively.
files in a Boundary Layer
of a Plate (According to Recently, H. Emmons and D. Leigh [62]
Emmons and Leigh). published detailed tables of computer

calculations of a system of equations for
a boundary layer (2.1) for a longitudinally streamlined plate in the
presence of suction distributed according to the law (2.6). Figure
8 and Table 4 show the data of the computations of velocity profiles
for the case of suction. These data have practical value.

TABLE 3. CHARACTERISTICS OF A LAMINAR BOUNDARY LAYER FOR LATERALLY
STREAMLINED PLATE WITH UNIFORM SUCTION.

—U, R . . . o0 o

Veu, °V% o Y He g i
|

0 0,648 0, 92 2,29 0,796

0,5 0,542 0,250 2,17 0,836

1,095 0,444 0,209 2,13 0,868

1,9265 0,349 0,167 2,09 0,917

Power Distribution of Velocities Along the
Outer Boundary of the Layer

We will consider the velocity profiles in the boundary layer to
be self-similar if they can be expressed by a single function with
an affine transformation. For a plane flow this allows us to reduce
the system of equations in partial derivatives for a laminar boundary
layer in the presence of a longitudinal velocity gradient on the
outer boundary, to one ordinary differential equation. In this case
the problem is simplified significantly. We will now examine a sys-
tem composed of the equation for a laminar boundary layer (1.9) and
the equation of continuity, which we can write in the form

Ou du U o
Un—t V=t vogs
0. oy?
x dy ox Y (2.7)
Ou dv
—67 + W == 0.
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TABLE 4.

SUCTION.

0, 00000
0, 10000
0, 20000
0,30000
0,40000
0,50000
0,60000
0,70000
0, 80000
0, 90000

1,00000
1,10000
1,20000
1,30000
1,40000
1,50000
1,60000
1,70000
1,80000
1,90000

2,00000
2, 10000
2. 20000
2. 30000
2.40000

2,50000
2,60000
2, 70000
280000
2.90000

3,00000
3, 10000
3, 20000
330000
3,40000
3, 50000
3,60000
3,70000
3.80000
3,90000

4,00000
4,10000
4,20000
4,30000
4,40000
4,50000
4,60000
4,70000
4,80000
4,90000

b,00000

DATA FROM THE RESULTS OF CALCULATIONS OF THE FUNCTION f'
{(n) FOR IHE BOUNDARY LAYER OF A PLATE-IN THE PRESENCE OF DISTRIBUTED /39

f(O) 0,,00
=1 3?823

0,00000
0,13282
0,26553
0,38788
0,52942
0, 65956
0,78755
0,91252
1,03352
1.14952

1,25953
1,36262
1,45797
1,54491
1,62302
1,69209
1,75216
1,80352
1,84666
1,88224

1,91104
1,93391
1,95174
1,96537
1,97558

1,98308
1,98849
1,99231
1,99496
1,99675

1,99795
1,99873
1,99922
1,99954
1,99973
1,99984
1,99991
1,99995
1,99997
1,99999

i,99999
2,00000
2.00000
2,00000
2,00000
2,00000
2,00000
2,00000
2,00000

2,

2,00000

f(0)- 0,05,

(0) -
+1,10103

0,00000
0, 13974
0, 27868
0,41652
0.55280
0,68689
0,81800
0, 94525
1,06767
1,18425

1,29404
1,39617
1,48989
1,57467
1,65020
1,71642
1,77350
1,82186
1,86210
1.89497

1,92133
1,94207
1,95806
1,97017
1,97915

1,98569
1,990356
1,99361
1,99585
1,99735

1,99834
1.99898
1,99939
1,99964
1,99979
1,99988
1,99993
1,99996
1.99998
1,99999

2,00000
2,00000

When using Table 4,

1(0) ~0, 10,
"(0)=
=l 474(‘\‘1

0,00000
0, 14673
0, 29187
0,43513
0.57602
0,71388
0.84791
0.97721
1,10080
1,21773

.1,32708
1,42804
1,51999
1,60252
1,67543
1,73881
1,79297
1,83844
1,87593
1,90628

1,93038
1,94916
1,96352
1,97427
1,98218

1,98788

1,99469
1,99658
1,99784

1,99866
1,99918
1,99951

1,99984
1,99991
1,99995
1,99997
1,99999
1,99999

2,00000
2,00000
2,00000
2,00000
2, 00000
2, 00000

FEvd

]

1,99190

1,99971.

I(O)~0 Ja.

h..l 54‘)10

0, 00000
015375
0, 30508
0,45368
059905
0, 74052
0,87726
'1,00838
1,13293
1,24998

1,35868
1,45832
1,54837
1,62856
1,69883
1,75941
1,81072

2,00000

".'

I(0)=—0 20,

=f, 62448

0, 00000
0, 16082
0,31832
0,47218
0,62190
0.76679
0,90605
1, 03878
1} 16407
1528103

1,38890
148706
1,57512
1,65291
1,72055
1,77836
1.82693
1,86699
1,89945
1.92525

1,94537
i, 196076
l 97230
1, 298080
1,96692

1,99125
1,99426

1,99630

1,99766
1,99854

1,99911
1,99947
1,99969
1.99982
1,99990
1,99994
1,99997
1,99998

we should bear in

1(0)=0,25, |  1(0)=0,30,
[70)= (0=
==1,70054 —=1,77734
0,00000 { ©,00000
0,16793 0, 17508
0,33156 [ 0,34481
0,49060 0,50894
0,64454 | 0,66696
0 79270 0,81822
0 93428 0,69193
1,06841 1,09727
1,10423 | 1,22342
1,31001 1,33965
1,41778 1,44537
1,51434 | 1,54021
1,60031 1,62404
1,67568 | 1,69696
1,74068 1,75936
1,79580 l ,81184
1,84171 I, 85520
1,87927 | 1,89037
.1,90042 1,91837
1,93319 1,94025
1,95155 1,95701
1,96548 1,96961
1,97583 1,97889
1,98338 | 1,98560
1,98878 | 1,99035
1,99256 1,99365
1,99515 1,99590
{,99690 1,99740
1,99806 1,99838
1,99880 1,99901
1.,99928 1,99941
1,99957 1,99965
i,99975 1,99980
1,99986 1,99988
1,99992 1,99994
1,99996 1,99996
1,99998 1,99998
1,99999 1,99999
1,99999 1,99999
2,00000 2,00000
2,00000 |  2,00000
2,00000 2,00000
2 00000 2,00000
2 00000 2,
2 00000 2,00000
2.00000 _
mind that

(O)_D 35,
==I 85484

0,00000
0 18226

1,47173
1,56476
1,64638
1571685
1,77668
1,82661
1,86751
1,90043
1,92641
1,94654

1,96183
1,97323
1,98155
1,98751
1,99170

1,99458
1,99653
1,99782
1,99865
1,99918

1,99951
1,99972
1,99984
1,99991
1,99995
1.99997
1,99998
1,99999
2,00000
2.00000

2,00000
2,00000
2,00000
2,00000
2,00000

Pt

(0}—0 40,
0)=
.=I 93301

0, 00000
0, 18947
0,37131
0,54534
0,71414
0,86810
1,01554
1515273
1527901
1,39384

1,49689
1,68803
1,66741
1,73544
1,79275

l 95214

1,96609
1, 297639
l 98386
1.98916
1,99285

1,99537
1.99706
1,99816
1.99887
1,99932

1,99960
1,99977
1,99987
1,99993
1,9939%
1,99998
1,99999
1.99999
2,00000
2,00000

2,00000
2,00000
2.00000
2,00000
2,00000

P

p=2g, W= 'f( )‘yTz
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TABLE 4 (Cont'd)

/40
/41

I

n 7(02=0_4.~ I(OL=0,50. 140)=0,60. | {(0)=0,7v H?=0,80, | 1(0)==0,90,, 1(0)=1,00, F{0)= =
e | e e e | | e | e | e
,09120 | =2, 2,4 146 =2,57988 | =2.74678 =2,9154s =3,0858: =3,25772
0,00000 | 0,00000 | 0,00000 { 0,00000 | 0. 0000 | 0,00000 [ 0,00000 | 0,00000 0, 00000 0,,00000
- ] Y .
8. 58888 8. ;gggé 8'%8% 8’21355 0,23321 | 0,24791. 0.26265 | 0.27741 0,29218 0,30694
0.20000. 1 0.38455 0;5817 0. 12412 | 0,45036 | 0,47643 | 0,50233 | 0,52802 0,55348 057869
0'10000 | 0 25908 | 0130432 |- 0:500es | oeoatan | O-58000 | 72032 | 0.75381 | 0.78619 | 0.81823
040000 | 0.75288 0.9163 0.79 G(I) 0,83783 | 0,87799 | 0,91709 | 0,95511 0.99205 1.02791
0.50000 | 0.89245 | 0,9 640 l.Qfsgls 1.00818 | 1,05165 | 1,09353 | 1I,13382 1,17256 1,20978
0,70000 | 1,17934 | 1 '286317 1 '55432 110281 | 1.20790 | 1.25008 | 1.29060 L3214 1,36576
0.70000 | 1s1rast | 120821 | 1.2548 1.30164 | 1.34578 | 1.38736 | 1,43649 1,46328 1,49785
0,80000. | 1,30544 | 1,33 8 | 1,37951 | 1,42477 | 1,46693 | 1.50618 | 1.54268 1,57660 1,6b811
. . ,44388 | 1,49001 | 1,53250 [ 1,57160 | 1,60754 | 1,64057 1.67090 1,69873
1,00000 | 1,52091 | 1,54382 | 1,58654 | 1,62537 | 1,66065 [ 1.69268 | 1,72175 1,74811 1,77200
}. ég%g {.géggsl) },?3102 1.26952 1,70419 | 1,73522 | 1,76303 | 1,78794 1,81025 1,83022
1.20000 | Logral _1.7658 .73285 1,76997 | 1,79660 | 1,82015 | 1,84098 1,85939 1,87566
|- 30000 | §eaoat 11 2923\ }.89 35 | 1,82393 | 1,84625 | 1,86572 | 1.88271 1,89754 d4,91047
40000 | 150760 | 1.82147'| 1.84616 | 1.86741 | 1.88568 | 190141 | 1,91495 | 1,9061 1,93665
1.50000 | 1.85270 ].8 20 .88 55 | 1,90180 | 1,91643 | 1,92884 | 1,93938 1,94834 1395595
LoD | 1-oag08 | 189840 | 101280 | 1402850 | 1.93992 | 1.94922 1,95755 | 1.96427 | 1.96991
L,70000 | 191779 ,1,9 526 | 1,93819 | 1,94883 | 1,95759 | 1,96482 | 1.97079 1,97573 1,97981
1.80000 1.3571 ,04596 | 1,95593 | 1,96402 | 1,97058 | 1,97592 | 1.98026 1,98381 1,98670
. .95714 | 1,96160 | 1,96913 | 1,97614 | 1,97995 | 1,9838] 1,98690 1,98939 1,99140
9,00000 | 1,96986 | 1,97319 | 1,97875 | 1,98313 | 1,98658 | 1,98931 | 1,99147 1,99318 1,99454
g.;gggg }.gggn; }.981761 1,98564 | 1,98876 | 1,99118 | 1,99307 [ 199454 1,99569 1,99659
2,20000 1 1-o8087 | 1.98761 | 1,99047 | 1:99265 | 1,99431 | 1996091 L.o96o7 | L9973 | 1.99792
2.30000 | I ,99382 1,99481 1,99379 | 1,99528 | 1,99639 | 1,99724 | 1.99789 1,99838 1,99875
2.50000 1'98604 i '99628 1099623 1,99702 | 1,99776 | 1,99831 1 .99872 1,99903 1,99926
2.50000 1 1,99604 l,997 1] 1.99750 | 1,99816 | 1,99863 | 1,99898 | 1.99924 1,09943 1999957
2.60000 | 1. 9845 99788 | 1,99846 | 1,99888 | 1.99918 | 1,99940 | 1,99956 1,99967 1.99976
. 70000 +99 1,99869 | 199907 | t,99933 | 1,99952 l1 . ggggg 1,99975 1,99982 1,99986
v 1,99006 | 1,99921 | 1,99945 | 1,99961 | 1,99972 [ 1.99980 1.99986 9999
2,90000 | § 99044 | 1,99953 [ 1.99968 | 1,99978 | 1,99984 | 1.99989 | 1 _g99g92 ‘ .gggs;; ‘13333%
3,00000 | 1,99967 | 1,99973 | 1.99981 | 1,99987 | 1,99991 | 1.99994 | 1,99996 1,99997 1.9
g. ; 800% 1.99981 | 1.99984 | 1,99990 | 1,99993 | 1,99995 : ,99997 | 199998 1,99998 1298888
2:20000 | 1,99989 | 1,99991 | 1.99994 | 1,99996 | 1,99997 ,99998 | 199999 1.99999 1.99999
3.30000 | 199994 | 1,99995 | 1,99997 | 1,99998 1,99999 | 1,99999 | 1799999 200000 200000
350000 1,99997 | 1,99997 | 1,99998 | 1,99999 | 1,99999 | 1,99999 |  2,00000 2,00000 2.00000
3°60000 1,99998 (1, ,99999 | 1,99999 | 2,00000 | 2,00000 | 2,00000 | 2,00000 2,00000 2,00000
360000 | 1599999 | 2,00000 | 2,00000 | 2,00000 2.00000 | 2,00000 | 200000 2,00000 2,00000
3.70000 | 1,99999 | 2,00000 | 2,00000 | 2,00000 | 2,00000 2,00000 |  2.00000 2,00000 2,00000
380000 | 2,00000 | 2,00000 | 2,00000 | 2,00000 | 2,00000 2,00000 |  2,00000 2,00000 2, 00000
. 2,00000 | 2,00000 | 2,00000 | 2,00000 | 2,00000 | 2,00000 | 2,00000 2,00000 L
4270000 | 5:00000 | 3200000 | 5:00000 | 2:00000 | ;00000 | “®| = = -
*4,20000 | 2,00000 | 2,00000 | 2,00000 | — - - - — -
4,30000 | 2,00000 | 2,00000 | — - - - - - -
=
n [(0)=1,30, ["(0y= | F(O)=1,40, 7]’(o)= F0)=1,50 ["(0)= | }(®)=2;00, )"(0)=
==3,43+04 ==3,60574 =3,78169 . =4,67770
0,00000 0,00000 0, 00000 0,,00000 0,00000
0, 10000 0,32169 0,33642 0,35112 0.42387
0,20000 0.60364 0,62832 0.55271 0,77007
0,30000 0.84963 0,88039 0.91049 1,05116
0,40000 1,06270 1,09643 112911 1,27732
0.50000 1,24550 1,27977 1,31263 1,45721
0, 60000 1,40053 1,43354 1,46485 1.59834
0,70000 1,53030 1,56077 1,58935 1,70739
0.80000 1,63735 1.66448 1,68964 1.79029
0,90000 1.72426 1,74767 1,76913 1,85220



TABLE 4 (Cont'd)

P
n '(0)—1530. "= ] Hol==1,40, [*(@)=_| H®=L50, [*(O)= | 1(0)m2,00, 0=
=—3,_43104 =3,60574 : =3,78169 =4.67770
1,00000 1,79365 1,81328 1,83305 1,89762
1,10000 1,84809 1,86410 1,87842 1,93032
1.20000 1,89004 1,90276 1,91400 1,95341
1,30000 1,92176 1,93162 1,94022 1,96941
1,40000 1,94529 1,95275 1,95918 1,98027
1,50000 1,96641 1,96793 1,97262 1,98751
1.60000 1,97464 1,97862 1,98197 1,92224
1,70000 1,98319 1,98601 1,98834 '1,99527
1,80000 1,98906 1,99101 1,99260 1,99717
1,90000 1,99301 1,99433 1,99538 1,99834
2,00000 1,99561 1,99649 1,99718 1,99904
2,10000 1,99730 1,99786 1,99830 1,99946
2,20000 1,99836 1,99873 1,99900 1,99970
2,30000 1,99903 1,99925 1,99942 1,99984
2,40000 1,99943 1,99957 1,99967 1,99991
2,50000 1,99967 1,99976 1,99982 1,99995
2,60000 1,99981 1,99987 1,99990 1,99998
2,70000 1,99989 1,99993 1,99995 1,99999
2, 80000 1,999M 1,99996 1,99997 1,9909%
2,90000 1,99996 1,99998 1,99999 2,00000
3,00000 1,99998 1,99999 1,99999 2,00000
3,10000 1,99998 1,99999 2,00000 2,00000
3,20000 1,99999 , 00000 2,00000 2,00000
3,300d0 1,89999 2,00000 2,00000 2,00000
3,40000 1,99999 2,00000 2,00000 2,00000
3,50000 1,99999 2,00000 2,00000 —
3,60000 1,99999 2,00000 2,00000 -
3,70000 1,99999 2,00000 2,00000 —
8,80000 1,99999 - - -
8,90000 1,99999 - - -
4,00000 1,99999 - - .-
.

b f(O)-i,osg,s 9[5":50)=. f(.):%g%isg(oh f(O)i%gz,zég(0)= f(0)=;51.(g<§.5 g;(0)= I(0)==61g‘0§o£;(o)= 7(0)=£§g?i9:;(0)+
0,00000 0,00000 0, 00000 0,00000 0,00000 0, 00000 0,00000
0,10000 0,49497 0,56392 0,69455 0,81494 0,92514 1,27525
0,20000 0,87935 0,98034 1,15830 1,30696 1,43026 1,74147
0,30000 1,17585 1,28551 1,46513 1,60095 1,70290 1,90944
0,40000 1,40223 1,60665 1,66551 1,77411 1,84780 1,96888
0,50000 1,57286 1,66469 1,79437 1,87440 1,92345 1,98951
0,60000 1,69960 1,77586 1,87580 1,93144 1,062922 1,99653
0, 70000 1,79220 1,85274 1,92634 1,96327 1,98171 1,99888
0,80000 1,85870 1,90495 1,95712 1,98069 1,99131 1,99964
0,90000 1,90558 1,93974 1,97660 1,99004 1,99595 1,99989
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TABLE 4 (Cont'd)

n “9’—":_36?3%92 3(0)= .(mz%g?s,?gg(m: uo)=;.gg.4 zfgéo»= 1 nm=_3.‘g?és é‘;(oh "0':.'.‘}(5?5 8',‘(0)= f (@)= :)ég?{gﬁ(o)—_:
100000 1,93803 1,96250 1,98626 1,99496 1,99815 1,99997
1, 10000 1,96006 1,97708 1,99244 1,99750 1,99917 1,99999
1, 20000 1,97472 1,98626 1,99592 1,99878 1,99964 2,00000
1,30000 1,98429 1,99191 1,99784 1,99942 1,99984 2,00000
1,40000 1,99042 1,99533, 1,99888 1,99973 1,99993 2.,80000
1,50000 1,99427 1,99735 1,99943 1.99987 1,99997 —
1,60000 1,99663 1,99853 1,99971 1,99994 1,99999 —_
1,70000 1,99806 1,99920 1,99986 1.99998 2, 00000 -
1,80000 1,99800 1,99957 1,99993 1,99999 2,00000 -
1,90020 1,99939 1,99977 1,99997 2,00000 2,00000 —
2,00000 1,99967 1,99988 1,99999 £,00000 - —
2,10000 1,99982 1,99994 1,99999 —_ -— —
2,200000 1,999914 1,99997 2,00000 —_ - —
2,30000 1,99995 1,99999 2,00000 - - _
2,40000 1,99998 1,99999 2,00000 —_— -_ _
2,60000 1,99999 2,00000 -~ - - —
2,60000 1,99999 2,00000 - - - -
2,70000 2,00000 2,00000 - - - —_
2,80000 2,00000 -— — - —
2,80000 2,00000 - - - _

Fig. 9. A Geometric Interpretation of the Self-Similar Solution

a is for m > 0,

Flow.

We will now investigate the case in which the velocity on the
outer boundary of the boundary layer is determined by the power in-

equalityl

the Accelerated TFlow,

U(x) = me,

b is for m < 0,

(2.8)

the Decelerated

1 The self-similar problem of a laminar boundary layer on a permeable
surface is examined also in reference [57].
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where C¢ = const.; with m > 0 (Fig. 9a) on the outer boundary of the
layer the current is accelerated, and with m < 0 (Fig. 9b) the flow
is decelerated.

Let us now introduce the current function ¥(x,y). Then the
equation of continuity of system (2.7) is automatically satisfied,
since

A P
U=—); = — =,
oy * ° ox (2.9)
Using the new variables
2 e E) , 2.10

nN=y D) v !

after the necessary computations we determine that
u = Cx"fo(n);

% e ey l/m +1 ]/C"m_

m+1Cx”’" (2.11)

]
LY '

S = O

g“—=0x (mié m;lnf;)z
"'+'(’"+‘f., Q‘nf;).

The symbol'’' denotes derivatives with respect to n.

m+l

Substituting expression (2.11) into the first equation of sys-
tem (2.7), we find that

; 1 —(@F)) =0,
o B+ Bl —@M (2.12)
where
2m B
PemgT o7 m=3—p-

This equation was first suggested by Falkner and Skan [63].
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We will solve equation (2.12) with satisfaction of the follow-

ing boundary conditions:

with n=0 fo=Co f, =0,
(2.13
with n=+co f—-+1. )

Substituting the boundary conditions (2.13) into the last expression
of (2.11), we obtain

—hﬁ
vo(x)——Col/2 . (2.14)

Computing the values of fg, f{, f§ and f§', we can determine /47

2ll the characteristics of a laminar boundary layer from the fol-
lowing formulas:

with the boundary conditions (2.13) for the particular case of B =

36

Qle

a5

* vx
b=a]/m+ll/
v
Y]/m+1 l/
m+ T T
= (0 U ””2’ - (2.15)
7=l (2.18)
Y.
s v
A e
- 2 +1

H. Schaeffer integrated equation (2.12) by numerical method

0.2. Complete tables of the func-
tions fy and also their first, second

/// — and third derivatives can be found
%Tf}f Fig. 10. Velocity Profiles for
/1258 i Self-Similar Solutions of the Equa-
12,6088 tion for a Laminar Boundary Layer
A 47608 in the Presence of Suction.
in reference [98]. TFigure 10 shows
) ' 2 3 @ the curves of the velocity profiles



for different values of the parameter C according to the data of
these calculations.

Reference [19] proposes a method for numerically integrating
the equations of (2.12) on an M-20 computer. We can reduce the
problem of (2.12) and (2.13) to a Cauchy problem. To do this, we
will convert equation (2.12) into the form

fo # U, (fo— ' =@+ DfG—D+BFH—D-

(2.186)
Integrating equation (2.16) over n and considering that
U, —11>0 npa 1-oo,
Wwe obtain
. [--] -]
&@=C—@+nj&m—nmr4jm—um. (2.17)

We will take as a first approximation to the solution of problems
(2.12) and (2.13) the function

Q) =b+n+a,

where the constants 4, b and a are chosen from equation (2.12) and
the boundary conditions (2.13). We will compute three first deriv-
atives with respect to n of the function ¢(n):

@ =1—ahe™ ¢ =ar’e™, ¢ =— ak’e™"n
and, assuming that n = 0, we find that
90 =0bba ¢O)=1—ak ¢"(0)=ahk* ¢"(0)=—ak’

Satisfying the condition (2.13), we obtain

a$b=g, ah = 1;
9" (0)=h; 9" (0) = — A%,

Substituting these relationships into the differential equa-
tion (2.12), we obtain the quadratic algebraic equation for deter-
mining #%:

K —ch—B=0.
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From this equation, we get
C
h1=.~2—+l/--c-:;+ﬁ, (2.18)

When the expression under the root sign is less than zero, we will
take

Cc
h1='§".

~
=
w0

Substituting the value of the function ¢'(n) Iinto equation
(2.16), we have the following expression for determining h:

h=c+ @D B

or
c c )
h=—+l/—+ + )

L) 7P 2 (2.19)

When the expression under the root sign is negative, then hp = %.

As a result, we take as a first approximation of fg(o) the
expression

f;(O)-_-_h_l_;;Ei.
(2.20)

Introducing the designations fg(n) = y1(n), 7:(n) = yo(n), yo(n) =
y3{n), where the dot represents derivatives with respect to n, we
can rewrite equation (2.17) as the system

-

y, () = y, ().
o () = Yy (; (2.21)

Gy () = — 4, () gy (m) + BL(W — 1. |
The boundary conditions (2.13) then take the form

with >0 5,0)=C; y,(0)=0; y,('n)—»l.

We will denote by yi1(n); y2(n); y3(n) the solution of system (2.21)
with the initial conditions

- - — hy—h
yl(O) = C; y, (0) =0, y3(0) = '—1-2—" .
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Furthermore, we will posit that y;(n) = yi(n) + Ay;(n), where 7 =
1, 2, 3. Let us substitute these equations into the system (2.21)
and, considering only first order differences, we obtain the system

[38]

dAy, )
—— Ay *
dn r
(2.22)
iA.‘y_!: - Ay - ¢
dn ¥
dA _ - —
s —y,Ay; — y Ay, + 2By,4y,
dn )
or in matrix form
Ay = AmAY, (2.23)
where
010 Ay,
Aln) = 0 01 : AY =] Ay, |},
—ga 26 Zg "‘-y‘ Ay3

and the dot represents derivatives with respect to n from the
column AY.

In addition to equation (2.23) we will examine the conjugate
system

X, _
where X(n) = X, , and A(n) is the transposition of the matrix. We
X3

will solve the system (2,24) with the following boundary conditions:

x5O =1L  xMm)=x,n)=0

where we determine the value of ng from the condition of prescribing
the accuracy, i.e., if € > 0 (the prescribed accuracy), then we
choose ng such that for all n 2 ny

19, (] <&
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Since (X is a matrix row)

(AYXy = AX + AVX = A()AYX — AVA() X =0
oY

Ay,x, ¥ Aypx, + Ay, I =0,

then, since 51

Ayl‘(O) = Ay2 (0) = 0, xa (O) = ]; x‘ (T]o) = x3 ('qo) - 0.

we have
Ay, (0) = x,(ny) Ay, (ny),

where

Ay, (n) = 1 — g, (ny).

In other words, to obtain each successive approximation, we found
the increment Ay3(0) under the condition that x2(ng) is known.

To determine xo(ng) we will simultaneously solve the system of
twelfth order equations (2.21) and (2.24), in which the first three
equations are a reference system and the remaining nine allow us
to reduce the boundary problem over x(n) to a Cauchy problem [37]:

-
- 3

9 =4y

Y= Y3

U= — G+ BGH— )
8 = Y5

g, = — & — 209,85
8= —8 +48g

2, =ygzg

. : - (2.25)
z,=—2z —28yzy
2, =— 2, + y2s
P = YoPs

pg ==, — 2ﬁ§2p3;

"’3 = —p +!;1P3

~
&5
N

with the following initial conditions:

|

HO=C 5O =0 gO)= _"1_‘2*;’1_: + AZ(O),

L0



where J§ is the number of the approximation;

£,(0) = 2,(0) = p;(0) = 1;
&y (0) = gs(o) =2, (0) = 23(0) =p (O) = pg(o) =0,

Then from the conditions

x, (ng) = ¢,g, (1np) F ¢;2, (M) + ¢op, (M) = 0;
2, (1) = €,85 (M) + €2, (M) + 6,0, (M) = O; (2.286)
x,(0) = ¢,8,(0) + €2, (0) + ¢c;,p,(0) =0

we find that

x, (M) = dyg, (M) + d2, (mg) + p, o).

where
d = Ps("lo)z, (no)—pl(flo)za(ﬂo) .
T e M)z — 2z g5(n)
d. — P ('lo)ga(“o)'—gl (no)ps(no)

& (M) z,(my) — 2, (ny) gz () ~

In the case of a permeable surface in the presence of suction
of a fluid from the boundary layer the solution obtained proves to
be unique (cf. reference [19]).

Using the proposed method, systematic calculations of the
boundary layer characteristics were made for the case when the normal
component of the velocity on the surface of the body is non-~-zero.
Figure 11 shows the results of calculations of the integral and
local characteristics of the boundary layer for different values of
the parameter C:

(6,0 = ,5 0 —fldn v@.C) = J[l—f;(n)lfé,(n)dn n o f(0).

The more general case, when not only the normal but also the tan-
gential component of velocity on the surface of the body are non-
Zzero, is examined in detail in reference [34].

Exponential Velocity Distribution Along the /53
Outer Boundary of the Layer

Let us now examine in more detail [23], the case of a boundary
layer with an exponential law of velocity distribution in the outer
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flow, i.e., when

o
U=Uyexplx,
10 \\\\ o€*p (2.27)
C=0
:\\\,az where Uy and I are constants.
N\'@
h&ﬁi‘i? _ W<? now introc'lu?e in place of.
aj,\Q —— : dimensional velocities and coordinates
— the dimensionless current function ¥
——— - and the coordinate n:
30
0 — a i
3 . A
04 Vi y=|— fo(n);
g \<::qz 1 (2.28)
g,
§:::z:519595 nE
\ o 14148 — g_ :
“\~5555§§§§-*_~‘ =) ¥
02 P
W\\\
Y ) Then the longitudinal velocity in the
0 « | b boundary layer will be
“ /,-
10 [a8 ~ - u=Uf, (2.29)
P
2/2:4"/ Satisfying the equation of con-
%,// N\ _|C=0 tinuity (the second equation of sys-
—1 06/44& ’ . tem (2.1)), we obtain
a: ! 2 B
vU! ,
Us=s — | —— — . 2.30
Fig. 11. The Dependence ( 2 )[f"m) ol ( )
of the Parame;ters a (a),
!
Ych(b\)/,land goig) ég)s:n . Substituting expressions (2.28) -
c e Value o € nstan (2.30) into equation (2.7), we will
' have a third-order, nonlinear ordinary
differential equation: )
f+if+20—f1 =0 (2.31)

and the boundary conditions have the form

fo=—Ci f=0 withu=0 fo—~1 withn—oo.
(2.32)

Here

Ce=-—Yo__ (2.33)
UL
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Fig. 12. Velocity Distribution Across the Boundary Layer with
Exponential External Flow.

Equation (2.31) was numerically integrated on an M-20 computer /55

by the method proposed above, with satisfaction of the boundary
conditions for ¢ equal to 0.2; O.4; 0.63 0.8; 1.0; 1.4 and 1.8.

Analogous data for a nonpermeable surface (C = 0) were obtained in
reference [72].

As a result of these calculations, numerical values of the
functions fg(n), Ffp(n) and f{§(n) were determined and also of the
following integral characteristics of the boundary layer:

A= - fydn B=F(l—-f;)f(,dn;
’ (2.34)
D= af (A — A fdn Fo= “f fydn;
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TABLE 5. VALUES OF THE FUNCTION f (2.28) AND OF ITS FIRST AND /56
SECOND DERIVATIVES. /57
C=0,2 C=0,4 C==0,6 Ce=0,8

n ’ L ’ L] [ L ’ »

‘s fe fo fo ' fa fo fo ‘o To N fo
0,0 | 0,20000 | 0,00000 | 1,80162 | 0,40000 | 0,00000 | 1,9214 | 0,60000 | 0,00000 | 2,04611 | 0,80000 | 0,00000 | 2,17562
0.2 | 0,23294 | 0,31431 | 1,34965 | 0,43483 | 0,33097 | 1,40112 | 0,63677 | 0,34787 | 1,45094 | 0,83875 | 0,36492 | 1,49879
0,4 | 0,32010 | 0,54444 | 0,96518 | 0,52603 | ,56678 | 0,97443 | 0,73201 | 0,58880 } 0,98039 | 0,93800 | 0,61039 | 0,88309
0,6 | 0,44614 | 0,70598 | 0,66411 | 0,55656 | 0,72771 | 0,65163 | 0,86686 | 0,74853 | 0,63667 { 1,07708 | 0,76834 | 0,61948
0,8 | 0,69902 | 0,81536 | 0,44182 | 0,81346 | 0,83360 | 0,42114 | 1,02759 | 0,85057 | 0,39940 | 1,24135 | 0,86626 | 0,37695
1.0 | 0,76978 | 0,88708 | 0,28504 | 0,98744 | 0,90104 | 0,26381 | 1,20453 | 0,91365 | 0,24275 | 1,42099 | 0,92496 | 0,22214
1.2 | 0,95212 | 0,93273 | 0,17862 | 1,17216 | 0,94272 | 0,16043 | 1,39137 | 0,95146 | 0,14316 | 1,60971 | 0,95007 | 0,12695
1.4 | 1,14172 | 0,96096 | 0,10881 | 1,36343 | 0,96772 | 0,09478 | 1,58407 | 0,97346 | 0,08196 | 1,80363 | 0,97830 | 0,07040
1,6 | 1,33576 | 0,97794 | 0,06444 | 1,55856 | 0,98230 | 0,05440 | 1,78012 | 0,98589 | 0,04557 | 2,00045 | 0,98882 | 0,03788
1,8 | 1,53243 | 0,98787 | 0,03710 | 1,75593 | 0,99056 | 0,03033 | 1,97806 | 0,99271 | 0,02459 | 2,19884 | 0,99441 | 0,01978
2,0 | 1,73062 | 0,99351 { 0,02075 | 1,95454 | 0,99511 | 0,01642 | 2,17700 | 0,99634 | 0,01288 | 2,39804 | 0,99728 | 0,01001
2,2 | 1,92967 | 0,99662 | 0,01127 | 2,15883 | 0,99754 | 0,00863 | 2,37647 | 0,99822 | 0,00974 | 2,59766 | 0,99872 | 0,00491
2,4 | 2,12918 | 0,99829 | 0,00594 | 2,35348 | 0,99880 | 0,00440 | 2,57623 | 0,99916 | 0,00322 | 2,79748 | 0,99942 | 0,00234
2,6 | 2,32893 | 0,99916 | 0,00304 | 2,55331 | 0,99843 | 0,00217 | 2,77611 | 0,99961 | 0,00154 | 2,99739 | 0,99974 | 0,00107
2,8 | 2,52881 | 0,99960 | 0,00151 | 2,75323 { 0,99974 | 0,00104 | 2,97606 | 0,99983 | 0,00071 | 3,19736 | 0,99989 | 0,00048
3,0 | 2,72876 | 0,99982 | 0,00072 | 2,95320 | 0,99988 | 0,00048 | 3,17603 | 0,99992 | 0,00032 | 3,39735 | 0,99995 | 0,00021
3,2 | 2,92873 | 0,99992 | 0,00034 | 3,15318 | 0,99995 | 0,00022 | 3,37602 | 0,99997 | 0,00014 | 3,59734 | 0,99998 | 0,00009
3,4 | 3,12872 | 0,99996 | 0,00015 | 3,35317 | 0,99998 | 0,00009 | 3,57602 | 0,99999 | 0,00006 | 3,79734 | 0,99999 | 0,00003
3,6 | 3,32872 | 0,99999 | 0,00007 | 3,56317 | 0,99999 | 0,00004 | 3,77602 | 0,99999 | 0,00002 | 3,99734 | 0,99999 | 0,00001
3,8 | 3,52871 | 0,99999 | 0,00002 | 3,76317 | 0,99999 | 0,00001 | 3,97602 | 0,99999 | 0,00001 | 4,19734 | 0,99999 | 0,00000
4,0 | 3,72871 | 0,99999 | 0,00001 | 3,95317 | 1,00000 | 0,00000 | 4,17602 | 0,99999 | 0,00000 | 4,39734 [ 1,00000 | 0,00000
4,2 | 3,92871 | 1,00000 | 0,00000 — — — 4,37602 | 1,00000 | 0,00000 —_ — —

C=1,0 Ce=l,4 C=138
“ ) ) L .
‘o e s o fo le ' fe N

0,0 1,00000 0,00000 2,30381 1,40000 | 0,00000 | 2,59061 | 1,80000 | 0,00000 | 2,88661

0,2 1,04076 0,38208 1,54438 1,44485 | 0,41641 | 1,62785 | 1,84900 | 0,45042 | 1.69991

0.4 1,14399 0,63147 0,98258 1,55585 | 0,67178 | 0,97238 | 1,96745 | 0,70928 | 0,95108

0,6 1,28712 0,78712 0,60036 1,70655 | 0,82141 | 0,55754 | 2,12498 | 0.85136 | 0,51064

0,8 1,45471 0,88067 0,35412 1,88009 | 0,90581 | 0,30846 | 2,30356 | 0,92640 | 0, 26442

1,0 1,63679 0,93508 0,20220 2,06633 | 0,95180 | 0,16509 | 2,49311 | 0,96468 | 0,13240

1,2 1,82715 0,96563 0,11192 2,25938 | 0,97607 | 0,08558 | 2,63816 | 0,98357 | 0,06415

1,4 2,02212 0,98235 0,60 2,45597 | 0,98847 | 0,04298 | 2,88589 | 0,99259 | 0,03009

1,6 2,21957 0,99119 0,03128 2,65436 | 0,99461 | 0,02091 | 3,08488 | 0,99676 | 0,01366

1,8 2,41832 0,99574 0,01579 2,85361 | 0,99756 | 0,00985 | 3,28444 | 0,99863 | 0,00599

2,0 2,61772 0,99799 0,00772 3,05328 | 0,99893 | 0,00449 | 3,48427 | 0,99944 | 0,00255

2,2 2,81744 0,99909 0.00366 3,25314 | 0,99954 | 0,00198 | 3.68419 | 0,99978 | 0.00105

2,4 3,01732 0,99960 0,00168 3,45307 | 0,99981 | 0,00084 | 3,88416 | 0,99991 | 0.00042

2,6 3,21726 0,99983 0,00074 3,65305 | 0,99925 | 0,00035 | 4,08415 | 0,89997 | 0,00016

2,8 3,41724 0,99993 0,00032 3,85304 | 0,99997 | 0,00014 | 4,28415 | 0,99999 | 0.00006

3,0 3,61723 0,99997 0,00013 4,05303 | 0,99999 | 0,00005 | 4,48415 | 0,99999 | 0.00002

3,2 3,81722 0,99999 0,00005 4,25304 | 0,99999 | 0,00002 | 4,68415 | 0,99999 | 0,00001

3,4 4,01722 0,99999 0,00002 4,45304 | 0,99999 | 0,00000 | 4,88415 | 0,99999 | 0,00000

3,6 4,21722 0,99999 0,00000 4,65304 | 0,99999 | 0,00000 | 5,08415 { |,00000 | 0.00000

3,8 4,41722 1,00000 0, 00000 4,85304 | 1,00000 | 0,00000 - - -

by




f=2B% H =—2—; £ = CB.

We will pursue now the physical meaning of the integral char-
acteristics of the boundary layer (2.34). The values A, B and D
are proportional respectively to the conventional displacement
thicknesses, to the impulse loss and to the energy of the boundary
layer. The value F;y 1s proportiomal to the work of the tangential
forces, and is equal to the energy converted into heat as a result
of friction between the particles of a viscous fluid. The second
derivative f3(0) is proportional to the local friction stress. The
values f and H are shape parameters, characterizing the fullness
of the velocity profile across the boundary layer, and t** is a
parameter depending on the intensity of suction of the fluid across
a porous surface.

The data of the calculations of the functions fg, fé and fg
as a function of the dimensionless coordinate n for different values
of the parameter ¢ are shown in Table 5, and the graph (Fig. 12)
shows the dimensionless local velocity across the boundary layer as
a function of the coordinate which is proportional to the distance
along the normal to the surface of the body.

Table 6 and Figure 13 show the values of the integral char- /58
acteristics of the boundary layer 4, B, D, Fg, fo(0), f, H and t*%,
The basic characteristics of the boundary layer change in full
correlation to the physical processes, flowing with fluid suction
from the boundary layer through the porous surface of the body.

DT T b n\L"
T4 Nl
[ ——
g3l—- 2] - g08{2r— :
2 _ . - J
] ™

f\
o wnfer | X
- P

ol A e

I -
1 Fig. 13. The Characteristics of
5l - ~;;>7’/ the Boundary Layer 4, B and D (a),
,J’// ‘ f§(0) and Fy (b) and f, H, %% (c)
- - as a Function of the Value of the
a6l Db Constant ¢ with Exponential Exter-
0 - g8 6 nal Flow.
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The Solution for the General Case of a
Boundary Layer in Series Form

For the arbitrary velocity distributions in the external flow
and suction along a porous surface, several methods of calculating
a laminar boundary layer were developed which in a certain sense
can be considered precise. They can be classified as methods of
solution based on the use of series expansion and methods based on
finite difference calculus.

TABLE 6. VALUES OF THE INTEGRAL CHARACTERISTICS OF A LAMINAR
BOUNDARY LAYER WITH EXPONENTIAL VELOCITY DISTRIBUTION ON THE OUTER

BOUNDARY ___ ——— -

. A ' B l Fa D # H .
0, 0,4763 | 0,2200 1,0166 | 0,3601 0,0965 | 2,1682 | 0,0439
0, 0,4519 | 0,2092 1,0768 | 0,3433 0,0875 | 2,1600 0,0837
0. 0,4290 | 0,1994 1,1400 | 0,3275 0,0795 | 2,1518 | 0,1196

0,190t 1,2052 | 0,3123 0,0723 | 2,1445 | 0,1521

0,3878 | 0,18140
0.3520 | 0.1656
0,3287 | 0.1516

1,2731 |{0.2085 | 0.0658 | 201378 | 0.1814
1,4160 | 0,2728 | 0,0548 | 201261 | 0.2318
1,5676 | 0,25020 | 0,0459 | 2.1165 | 0.2729

00 O 00O by
(=]
£-S
o
i
~

In order to calculate the laminar boundary layer using series,
which are applicable with power velocity distribution on the outer
boundary of the layer, universal functions for the coefficients of
these series were computed. Due to poor convergence, these series
are used only to obtain initial values with the use of the finite
difference method.

Gortler [65] - [67] proposed a new method, based on the repre-
sentation of the solution in series form with high convergence and
the introduction of the new dimensionless variables:

g U
§=%‘ju(x)dx; n= v - (2.35)
1]

[+ o]
2v U(x)d.x]

We now introduce the function

hE =29 2.36
0 VV% ( . )
where y(x,y) is the current function. Thus for the velocity com-
ponents we obtain
of
HEE 9 = 5 U @ (2.37)
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0
ot §) = ——I/Lf[fo@, ) + 2&—;—;(&, W+ GE—

of, (2.38) 60
— D= o (& n)]U(x).

and we convert the system of equations for the boundary layer to
its final form

S Zora (2]

(2.39)
_x [_‘?to_.ff’_o %]
- on .0tom Ot Oy |’
where the function
dU X
dx
B (®) =2“;§ In [U(x)] = Uz(;) j‘U(x)dx. (2.40)
]
and the boundary conditions are the following:
f0 o 1im s
o & n =0 l'm—(ﬁ M=lyith n>oo
(2.41)
of
&0 + 2556 0 =y ®.
The function
1
0 ’
YO = —75 JU(x)M (2.42)

takes into account the presence of suction of the boundary layer.

We will assume that functions (2.40) and (2.42) can be expanded
to a series over £, converging in the interval of interest to us,
and we will represent these functions in the form of power series

pEH=TBsh  v®=T @k + Dy (2.43)
=0 k=0
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In addition, we assume that

U(x) ___xrnlso+slxm+l -‘f‘-szx"""*'" * “‘]' (2.44) /61

where m = By/(2 - By) and sy # 0. The expressionm = 0 (By = 0)
refers to the flow near the critical point of the plate, and m = 1
(Byg = 1) refers to the streamlining of the rounded leading edge.

The distribution of the suction rate can also be expanded to
the power series

me—1 oo

2 Rk(m--1)
Up(X) = x o.X .
a k (2.45)
We will seek the solution to equation (2.39) in the form

fo & n)=Xfo,,(n)§“- (2.48)
f 2=

The determination of the coefficients of the functions fol(n) can

be reduced to the computation of auxiliary functions. However, the
number of auxiliary functions increases very rapidly with an increase
in the order of approximation. Thus, for example, for fourth order
there will be 38 auxiliary functions.

For the practical use of boundary layer suction, the case 1Is
interesting when suction begins at a certain distance xy from the
leading edge of the body. Then the suction distribution is a con-
tinuous function of a coordinate along the surface of the body.

W. Rheinboldt [97] proposed a solution to this problem for the

general case of velocity distribution along the outer boundary of
the boundary layer in the form of the expansions

u@) =Y ag”
=

U =Y Un (x — x0)";
,,E. . (2.47)

Up (%) = Z U, (x — x)"
n=0

J

(in the last expansion vy # 0).
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Fig. 14. TFlow With Uniform Suction of a Laminar Boundary Layer on

a Plate (a) and Through a Slot (b) (According to Rheinboldt).

When expansions (2.47) are applied at point x = xg3 ¥ = 0 there /63
is a singularity, which we can investigate by the transformation of

coordinates

‘Nti//x__x—o" ; (2.48)

b(x y) =" 90, 1)

Lg



The current function, which for large values of x tends to an asymp-
totic solution, is defined in these new variables.

As an example, Rheinboldt examined a flat plate with uniform
suction of a boundary layer downstream for two variants: beginning
with a given point xy (Fig. lia) and for uniform suction between

two points xg and &; (Fig. 14b).
Use of the General Method of Finite Differences

The second trend in the development of precise methods for
integrating the equations for a laminar boundary layer is the appli-
cation of the general method of finite differences [131]1. The
method of finite differences as applied to the equations of a bound-
ary was developed by Schroder [104] and G8rtler [64]. We will now
examine G8rtler's method with the refinements for solution near the
surface, which were proposed by Witting [12u].

We introduce the dimensionless variables

= . - _ yVRe, - p
x—L‘ Y = L . p;—_‘ 2;
P

- u - vl Re — U
UO ¢ Uo U Uo'

where Uy is the characteristic velocity and L is the characteristic
length.

After the exclusion of the value v, with the help of the equa-
tion of continuity for a plane boundary layer, we can write eqgua-
tion (2.7) in the presence of suction in the form

Y

ou du du dal | %
ua"i" Uo_j‘ady E_(_/=U-d—x '—‘-‘aya . (2.49)

For a point with coordinates x4, yx (Fig. 15)

x,=x,+ih i=0, 1, £2 ...; A>0;
o=k T E=0,1,2 ...; I>0

Ujp= u(x, y,)-

We will express the derivatives as finite differences:
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ou A
TP

ou Vi

ay Co W) =5 (k> 1) (2.50)
ou Vi
Tyz—(x', yh)= 412 (k>2),
where
A=t TN
Viw = % Yo pmrs
Vi = Visrpr — Via—r
(7% Sl
Using the trapezoidal rule for the
Ys integral in equation (2.438) we obtain
Y2 B " R~ 1 oh
g+ 1. A:_k - f*hulu; + o V?_k + Vi Z Al, -7 vt.o)} X
‘1 | pr (2.51)
Y% i - X __l_.'_'
g  Kq, N Yoo K 2(uy e —hv, )
Fig. 15. A Grid for where
Computing Finite Dif- ,  dUu
ferences. v = dx ' k1.

The differences V; g, V72;’0, V%al near the wall can be computed

in the following form. From equation (2.49) with y = 0, we have
0% ou op Ou
= =05 = =0{5 | —UU'.
( Oy* >y=o (a!/)o+ ox °(0y)o (2.52)
Differentiating equation (2.49) we obtain /65
Pu 0%
), Y s Jo (2.53)

We can write the approximate relationship near the wall for the
three points y;, Yy, and y3 as:

o Ou . i
B B (5o v
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and thus we obtain three equatilions for determining c¢(x), d(x) and
Vé’l, from which it follows that

11 1 1 |
Vx’.n = V?,o ("13 + -§-lv‘_a) + 7 V?.z -9 V?,s .

(2.54)
In addition
Vie=— 40U +0,2v,,
Denoting
Vie=Viza— Vip
after simple transformations we obtain the relationship
w
- ! e (1 ——‘i) *
Vie | 40,2 11 v, 18 3
- v — e
1,0 (18 3 ) (2.55)

1 1
PV 5 Vig -+ ') Viz.a] .

This relationship is the generalized Gortler formula for a permeable
surface in the presence of suction.

Rheinboldt [97] found that to obtain more stability in solution
it was necessary to use the finite differences

ou Vi_k =_l_ —
a(xb Y = -k @i Sk (2.56)

A somewhat different approach to the application of the finite
difference method for solving the equations of an incompressible
laminar boundary layer in the presence of suction was proposed by
Smith and Clutter [107]. According to the above-méntioned reference,
the system of equations for the boundary layer and the equation of
discontinuity (2.7) can be reduced to one third-order equation rel- /66
ative to the current function ¢ by using the relationships

- 2’ (2.57)

(2.58)

As a result we obtain the equation
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% Po_ 00 Pv_ U Y
_a_y_.axay_—a? o Uax + v o » (2.59)

while the boundary conditions will be

a‘p N 9.12- = ) = U,
(a_y.) =0; v, with y=0;

%‘Ep-—»U(x) with y—oo. (2.60)

Using the new variables which were first introduced by Falkner and
Skan

¥ = (Uv0? fi(x, ),

1 (2.61)
1=UM9*y,
we convert equation (2.7) to the form
w M+ . 2 . Of, of
= — |—— — s * o s 1o 2.6
i=—("2 )fofo+M(fo - +x [ ~hae]. (2.62)
_ ,x.,dU . . .
The parameter M = (ﬁ)(EE) takes into account the velocity gradient
on the outer boundary of the boundary layer. The boundary conditions
will be
LI
fb=0i  f=—Un) ° {v,@®)dE with n=0;
l
fo>1lwith 9 ->o00, (2.63)

where & is the integration variable.

Equation (2.62) has important advantages in comparison to the
other possible forms of the equations for the boundary layer, which,
as a rule, have a natural singularity at the point = 0. In addition,
to solve them we must assign an initial profile. This profile is

usually assigned at a certain distance from the leading edge.

Equation (2.62) does not contain singularities at the initial /67
point. In this equation, with the condition that the derivatives
of fy are finite, the expression in brackets, containing the deriv-
atives over x, becomes zero, and thus has a self-similar solution.
The form of this equation is such that the expression in brackets
represents a correction to the self-similar solutions. In this case
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the boundary condition on the outer boundary of the boundary layer
is somewhat simplified.

The basic idea of this solution consists in the replacement of
the derivative over & by finite differences in order to reduce the
equation in partial derivatives to an ordinary differential equa-
tion. As a result of thorough investigations into the use of two-
point, three-point and four-point schemes, Smith and Clutter [107]
decided on a three~point scheme, characterized by reasonable pre-
cision and the necessary stability.

In equation (2.62) both derivatives over x are replaced by the

Lagrange finite difference formula for three points. Let m denote
the order of the derivative, then

(-#(m) l l
= m)
( ox )n [ X == Xp—) + Xp ~ Xp—2 ]ﬂ’ -

_]— = Xnap ™ g
. (X2 ~— Xny) (Xn—1 — Xn—9) A=l

. (2.64)
I Y T R P
(X — xn-—?) (Xnw1 — xn—2) -2

. . (Axp | [ FF™
The error in formula (2.64) is of the order 3 prea

The difficulties in solving equation (2.62) numerically are
caused both by its nonlinearity and by the fact that one of the
boundary conditions was assigned with n 8 o . With integration we
use the method of successive approximations employing various extra-
polation formulas.

The problem with the general methods, which are based on using /68
the finite difference scheme, is that they are very unwieldy. How-
ever, if we make the calculations on a computer, this problem is
eliminated.

Possible Solutions for Certain Classes of Problems
The general theory of self-similar solutions to the equations
for a boundary layer in the plane case was developed by Holstein [76],

Mangler [85] and Wuest [131]. In order to make the velocity profile
self-gimilar, the following conditions must be satisfied:

] d 4
ul(;c(x;/)z Z,(,“’=“<")» (2.65)

where

n=} Reg(x)y.
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Integrating the equation of continuity of system (2.7)

dfu , {UY.
Rev———oa(?)-f-ﬁn(—g*) (2.66)

and substituting this relationship into the Prandtl equation, we
obtain an ordinary differential equation

6" +0,00" + a,(1 — 0 =0, (2.67)

where

1
a, = —
1 g dx '}
-1 du
R

From equation (2.66) we find the suction distribution along the sur-
face of the body

_ p g_)
VRev =g, g | {= a0, (2.68)
dx

since

0'(0) =0, o(0)= const,

With supplementary conditions we can find several variants of /69
the solutions. Table 7 [131] shows the possible self-similar solu-
tions.

Let us now examine Tthree-dimensional self-similar boundary layers
in the presence of suction according to the results of Wuest's inves-
tigations [131].

1. Self-similarity along a surface. In this case the velocity
profiles on the entire surface are affine and the velocity profile
corresponds to the expression

u(x, y.2) .. vix, 4,2 _ _,
Uy @ Jray =¥ e (2.69)
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where £ = YRe g(z,y)z; x and y are the coordinates along the surface;
z is the coordinate normal to the surface; U® and V¥ are the scale

factors for velocity. If the velocities U and ¥V on the outer bound-
ary of the boundary layer do not become equal to zero, then we can
take U%* = U and V¥ = V. Substituting relationship (2.69) into the

system of equations

&t l Op Fu

“x Tty 24w az 2 PV

__-ai o _ ‘ap\@v (2.70)
uax +Udy +w§z———-35&+v7&;1+

ou Oy

0+0y+ % o,

we obtain the system of ordinary differential equations

0" $ 6 (@0 ¢ 57 b a,(l —0) + ag¢l —0'T) =

2.71
7 (@0 + byT) b by (] — T 4 b1 —0'F) =0, (2.71)
where
o= 1.9 (U, 1 o LA S o
x—?'a}'("g—)v 2—? ox Qy = ga U* ay ’
b LO(VY LV
! gay(g)' g oy
b Ut l aV#
3~g’ V‘ ax
In this case the boundary conditions on the wall (2 = 0) will have
the form
o' (0) =7 (0) =

0(0) = 6y = const; t(0) = ¢, = const,

The conditions on the outer boundary of the boundary layer are
a function of the choice of U%* and V&. 1If U% = U and V* = V, they
will correspond to the expressionm 0'(e ) = 7’'(c0) = 1. To satisfy
the boundary conditions on the wall the suction rate must satisfy

the equation

VRewy(x, y) = — g(a,0, +

+ by79) = — const - g. (2.72)
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TABLE 7.

ARY LAYER IN THE PRESENCE OF SUCTION.

Type of Flow

A Flat Plate

The Critical Point

Flow in the
Diffusion Section

Flow in theWedges
Flow in the:.

Convergence Section
Flow in the

Diffusion Sectiona

Backflow in
the Wedges
Flow in the
Convergence Section
Flow in the
Convergence Section
Flow in the
Diffusion Section
Flow from
the Drain

Flow from
the Source

These results are analogous to a plane boundary layer.
for a spatial boundary layer, g is a function in two variables.

SELF-SIMILAR SOLUTIONS TO THE EQUATIONS FOR A PLANE BOUND- /70

U a - ¢ o Source
_ § 7—5-. e '
U=PBeconst | 1 0 Vz‘i ~x 2 (102}, (111], [119). 162]
U =px 1 1 : VE ~const [102)
U =ps° I —co<a,<0 (85) For &5=0.1 and
foga <2 i o a=t a2=—035
[ BT | ~x ™ 91 for — 05 <ay<O
_ 1 —1 —°9<;a<— 183
al et et
2(.;’) I |—l—2 < ay 0
—110 L0y, oo
U = pe?* 1 p) Ve "
Uspe™ |—1] —2 Vip—* o=
B
e vE L
B x ~x
u = 0 —1

/71

However,
Pos-

sible solutions for the spatial boundary layer in the presence of
suction and [self-similarity along a surface] are shown in Table 8,

while for cases 7 and 8,

assuming m,

obtain the additional solution

U=Apx + gy)’
V =B(px + gy)"

= m Oor

my

n=—1

g=Clx b gy ° .

L}

ny = n, we can

OF SUCTION

TABLE 8. THREE-DIMENSIONAL BOUNDARY LAYER IN THE PRESENCE
WITH SELF-SIMILARITY ALONG A SURFACE.
Para-1 . .o 1| case 2 Case 3 Case y |~ase |CaseyCase |r 50 3
meters 5 8’ 7
7 AePrtey Axmy! Ax™elY Ayle” AePrr | Aet¥ | Ax™ Ay
v BeP* iy Byl Bx™— etV By Berrr | Betw | Bx™ | By™
wxtey) {m—1} 1) 2y (n—1 px Bx P tmy—1) 1)
grew, | Co P cxr 2y cx ? e? Cy ? e? Ce? ce 2 cx T |Cy ?
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2. Self-Similarity Along a Line. In this case the velocity
profiles are affine along the line x(x,y) = const. Thus for the
velocity components u and v

u(x, .2 _do(ub) . vxg2) _ot(ub
U* (x, ) o ' V'Y 0%

(2.73) 72

where

“t=VReglr, y)2

Substituting this relationship into the first equation of sys-
tem (2.7), we obtain the following system of differential equations
in partial derivatives with the two dependent variables x and £.

o, + o (ao+br)+a(1—a?)+a(l—a; )+

+ o, (a0, + b,T,) — aoon-i-b'rt w=0
. (2.74)
tm-l-'ca(a,o-}-b,t)—}-bz(l—tg)-l—bs(l— . ‘)-—

~ a0, — b, =0.

Here aj, as, aszy b1, by, b3y have the previous values, but they are
no longer constants; rather they are functions of ¥x.

In addition

2 — U*%, b _(V*x)
g T g (2.75)
The suction law must satisfy the equation
—VRew, = g(a,0, + b7, + a0, + b,Ty) (2.76)

The expression in parenthesis is a function only of ¥x.

Numerical calculations of a spatial boundary layer in the pre-
sence of suction and linear self-similarity were not made until

recently.
A Boundary Layer With Intense Suction

Let us now examine the case of intense suction of a fluid from
the boundary layer when the suction rate is high. Then, as Pretsch
explained [95], [96]1, the velocity profile in the boundary layer
with an arbitrarily assigned suction rate vy(x) and velocity distri-
bution along the outer boundary of the layer U(x) is reasonably well
approximated by the asymptotic suction profile (2.3).
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If

v = j v dr + L8 o ny,

Uy
@ (2.77)
where
-5,
then the velocity components in the boundary layer are
fo v du fo
—-UaT ”=“vo—(v—2‘)[a"ofo‘*'u"oa +
(2.78)
of
“valiz =i

We can convert the equation of fluid motion (the first equation

of system (2.1)) to the form

o+ () @[ - (F) i)

of, &, o4, of .. O (2.79)
+ s 3 75— g |~ U g = O

and the boundary conditions will be

of,
fy=0C; a—£’=0withc=o;

h_, , (2.80)
a with oo,

When the value of vy 1s very high, equation (2.79) can be sim-
plified considerably and takes the form

*l, &,

c=+az;'=°' (2.81)

The solution to equation (2.81) when the boundary conditions
are satisfled is

& =l— (2.82)
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Comparing expression (2.82) with the solution to (2.3), which we /74
obtained earlier, we arrive at the conclusion that the limiting shape
of the velocity distribution across the boundary layer in the presence
of intense suction 1s an asymptotic profile. In particular, the
characteristic thicknesses of the boundary layer are inversely pro-
portional to the suction rate vy and are not a function of the local
velocity on the outer boundary of the layer.

Analogous reasons allowed Watson [120] to obtain an analogous
expression for the velocity profile in the case when the suction
rate vy is high. Approximately, this expression has the form

d
fy 2, c)=.fo,,+( )(dx ol + U ”"fo,) (52)[0%,,‘—’«%r2,.,+
o/ 1. (2.83)

daUu U d
+< )2fuo+u vofn"' +U2"odvof02 +U(dvo)f0uJ

where fo 05 f1,05 fo,15-+.are functions in C.
After substituting expression (2.83) into equation (2.63) and

satisfying the boundary conditions (2.65), we can compute the func-
tions fy,0», f1,0> fo,15+--+- Then for the velocity profile we obtain

the expression

, av . du, o
= foo (013) (Evofx.o + U’%‘fo,i) +
(]

(7
dxU d*v, .. du  dy,
[ dxza'xTofz,o'*?( )vgfxlo+u vod;fn (2.84)

2
4+ U, 220, 4 U2 (%) f;.,,]*’r veer

where

%ﬁ::]__fﬁ
. -7
=15 = *2;)8 H
e (2 (2.85) /75
. 1 1 .1
&J=="‘<§'?'f??)5*'fi?3’%

1 3 9\ =
fo=(he 35 D)t (e )
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he= (“‘ e+ 204 ) (g;’+§t+2-’)e-ﬁ;

2
- l_ s 1 1 25 1 ot 1 _3
,..y—(sz +2C +?‘t+24> -—(7{+1)e '——228.3,
1 1 1 65
fo.n=—(§v+—2‘§3+T€2+§§4"E)¢_I+

~2_1 =
(z;+2c+) — s,

The characteristics of the boundary layer can be computed using
series (2.84). In particular, the dimensionless value of the coef-
ficient of local friction is

oy (Y2 W — Lyt
gvou"+(§)(2dx"° Vo) *

Ve 7,80, 13/dU\ du  do,
*(a)[“fuwvo—ﬁ(u)"e"“"“d Vg * (5.86)

.5 dvy 10, 7do \*)
+ 5 V% e _?TU(dx T

the dimensionless displacement thickness is

o0 dU dv au
£ (gt T () e

SOV s 67, AU don 101, 0y 255 dy (2.87)
4’4(5)”3"2”(1 el P ‘dx2+18u( )]"‘""

and the dimensionless thickness of impulse loss is

ved** 1 v 7 dU du,
v =?‘*’-(v—g)_[—ra"o+ [adrry ]“’

e\ [251° @ o BT (dU): (2.88)
(@) vE w (&) 4=
569, dU  dog 275 . dy | 135, (dog |2
— 2 V&% — 1@ Vg t g (EE)]""“
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CHAPTER 3
APPROXIMATE METHODS OF CALCULATION FOR A PLANE BOUNDARY LAYER /77
The Use of Impulse Relationships

For an approximate calculation of a laminar boundary layer
with an arbitrary velocity distribtuion along the outer boundary
of the layer, we can use either the integral impulse relationship
(1.34) or the integral relationships for impulses and energy (1.37)
together. The essence of these methods is that instead of the
actual velocity profiles in the cross sections of the boundary layer,
We use an approximate one-parameter set.

Varying the parameter, called a shape factor, allows us to
create a variety of profile shapes necessary for an approximate des-
cription of the velocity distribution in the boundary layer. The
known methods of approximate calculation for a laminar boundary
layer are characterized by an assumed set of velocity profiles in
the boundary layer, and also by the choice of integral relationships.

Schlichting [103] proposed the first method of approximate cal-
culation for the laminar boundary layer of a porous surface in the
presence of suction. This method was based on the integral impulse
relationship (1.34). We chocose as a set of velocity profiles in
the layer the one-parameter set

4

U_=F1(”) + kF, (1), (3.1)
where
A
S
Fo0) = —exp(—n),
Co0) = F, —s., ,‘>with0 <<3;

Fo,(W)=F, —lwithny 3.
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The function sin(%n) quite satsifactorily approximates the Blasius /78
profile.

Due to this choice of the velocity profile, the following
boundary conditions are automatically satisfied:

. ou au %
withy=0 u=0;, v=10y v—= U= gu,
y 0r van de +vay’.
(3.2)
. _ 4y Ou Pu
withy oou-—U.a—y—O, -0:17?:0'
The parameter k is defined by the equation
At r—1
k= + 1 n »
1_.7»1(1—5) (3.3)
with
dUu & —ud
K—d._x'T' M= v
This equation was obtained as a result of the substitution of the
velocity profiles (3.1) into the impulse relationship (1.34).

To determine the thickness of the displacement flow, the thick-
ness of the impulse loss and the tangential stress distribution,
we obtain

o* = §(1 — 0,09014k);
¥ 1-—0,09014%
8** = 9 i
0.5 + 0,06656% — 0,02358%3 (3.4)
Té** L
L ={14k{1—=%]](0.5 4 0,06656k—0,02358k?).
ul/ 6
Using equation (1.34) and formula (3.4) we arrive at the ordinary
differential equation
6
1—k(2——
1 ,,dZ n (3.5)
U+ 2 4 — L] .
7 Vg | * 6,5+ 0.06056k — 0,00350% | | #1 = 2 ),
where 79
b2 f —p 5%
Z— Py = dU‘ t** :\ .
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To simplify the notation, we introduce the function

1.—k'(2—%‘\)

= -— . . —_— * %
G =2 (k) — 27| 2+55 5 066566 — 0,02358%2 | — 2 (3.6)

and reduce equation (3.5) to the form

1

az
Ti;_:l—fG' (3.7)

It is advisable to integrate equation (3.7) by the isocline method.

The case in which the one-parameter profile set (3.1) under-
goes a break in continuity with n = 3 should be attributed to the
deficiencies of the method we are examining. This fact contradicts
the physical representations of the boundary layer. In addition,
integrating equation (3.7) by the isocline method is a very time-
consuming and unwieldy operation.

The Torda method [115] is based on the use of the integral
impulse relationships (1.34%). For a velocity profile across the
boundary layer, we choose a third degree polynomial. The polynomial
coefficients a, b, ¢ and d are defined by the boundary conditions

) ; Ou du d%u *u ®u
=0; v = v, —) =US (. SEY w94
“ U= Ui Yo (Oy)o v Y <6y2 .)o L (61/2 )o V(ays )o

withy=0 ¢ (3.8)

0
u="U, a§=0withy=6.

The polynomial coefficients are

2+t H
80,
p3(—3r+4n

D,
— 3Ar 4
6°D,

d= —6 4 3% 4 242 — 6AF — 312
) 8 .
2 _du | ¢8? _
whege Dy = 18 + 6t + t“, X = Tz . N the Pohlhausen parameter; ¢ = 80
%
0 is the suction parameter.

a

=
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Having determined the coefficients of the polynomial, we can
compute the function

6 »
G )= 144 (406 f 2 9.4 f0) —
1 (s f) = —- 1260D[ 4 (406 - 2781 4 8912 4 13£24:1%)
— 6A(132 — 158¢ — 104¢2 — 131%) — A2(612 -+ 303t — 38¢%)}; (3.9)
G, (% t)_— 200 [4(36 - 16f 4 33) — 3A (4 + 0));
4 4 6 +
G, 0 1) = 2+ g . 0,

In this case the impulse relationship has the form
us d (v
de+0( )+GI(U53) dx(vo) (3.10)

Equation (3.10) should also be integrated by the isocline method.

Truckenbrodt [117] proposed a simpler method for calculating
a laminar boundary layer on a porous surface in the presence of

suction. Converting the impulse equation (1.34) to the form
f—x=(—jl—0(f, (*%), (3.11)
where
7 = &+ : = .G_f .d_Uv P — 0p6**
J v dxc’ v °

~
(00}
=

the function G can be represented approximately in linear form

G = cy(1 — 20%*) — (by -+ 1), (3.12)

where eg = 0.441, by = 5.

Then equation (3.11) becomes a Bernoulli type equation which
can be integrated in finite form. Thus, by computing the function
§%%(2x) we can determine all the remaining characteristics of a
boundary layer.

To calculate a laminar boundary layer, in the presence of suc-
tion, reference [22] used in first and second approximations, a
profile set in the form of the sixth degree polynomial



2 ] 4 ] ’ (]
(8] e8] sl rol] 2o (8 2o] oo

To determine the coefficients of the polynomial a, (Z = 1, 2, 3, 4,
5, 6), the following basic and supplementary boungary conditions on
the surface of the body (y = 0) and on the outer boundary of the
layer (y = 6) were used:

A U du | ou Up Ou Pu v, O?
:.:0 = P — . —— __.———-.,...._o..._' = u
R R R i T

with y=0; (3.14)

Ou 0 Fu

u-—~U, @=6y2 =W=9wi'thy=6'

The coefficients have the form

1— 12) A — 120
01=( éz )
30 (A -+ 20)
g, = —F——=}
2 l)2
— 10¢ (A
aa="_““_ltD( +2t): (3.15)
2 1
5(9t2— 36t — 12 4 4M 4 60) |
a, = — :
D,
a — 3 (200 — SAf~— 1224 64f — 120)
(1 Dg - v
e — 2(5bf2 — 30{ <+ 27Lt‘— 9A + 60) _
D,
where
02 == 12t —-13-60-
In the particular case of a laminar boundary layer on a non- /82

permeable surface (£ = 0) the coefficients of (3.15) agree with the
respective values computed by Schlichting and Ulrich [101].

Values for ¢, H and F in equation (1.74) as a function of the
shape factor of the boundary layer f and the suction parameter t%%
were computed using polynomial (3.13)1 Figure 16 shows the results

1 In references [27,28] a sixth degree polynomial was used to com-
pute the characteristics of a stationary and nonstationary laminar
boundary layer on a nonpermeable surface in the presence of blowing.
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in graphic form.

It follows from these graphs that the function is almost linear,
i.e., as a first approximation we can assume that

F(f, %)= A@**) — B@*")f. (3.16)

Figure 71 shows the curves of the corresponding values of coeffi-
cients 4 and B.

According to expression (3.16) we can write the integral of
equation (1.7%) in the form

1

)= le () — 20 (N Udx 4 C oo L e

dx “UB (3.17)

where C is the integration constant.

When the origin of the coordinate system is placed at the
leading critical point (U = 0 with x = 0), it follows from the
condition of finiteness of the parameter f when x = 0, that the

A

constant ¢ = 0 and f(0) = 5

The curve F(f, t#%) (cf. Fig. 1l6c) does not coincide exactly

with a straight line. In the second approximation we can allow
for the error arising as a result of the linearization of the
function F(f, t**). 1In fact, if we replace expression (3.16) in

equation (1.74) with

F(, t7%) = A(t**) — BE**) [ — e (f, t*), (3.18)

we obtain the solution to equation (1.74) in the second approximation

fo) = U"BIIA 2%+ e () U dx, (3.19)

The graph of the function e(f,t*%*) is shown in Figure 18.
For an approximate calculation of a boundary layer in the

presence of suction, Yu.F. Kontsevich and N.D. Shal'kin used a pro-
file set proposed by L.G. Loytsyanskiy [41] for a nonpermeable sur-

face:
u n+1 n42
_=l+a(l—— (1——) s ag(1— 4
U 1 ) +a, 5 +“’(I 5] - (3.20)
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Fig. 16. The Coefficient of Friction ¢ (a), the Shape Factor H (b)
and the Function ¥ (c¢) as a Function of the Parameters f and t#%%
With an Approximation of the Velocity Distributions Across the
Boundary Layer as a Sixth Degree Polynomial.
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Fig. 17. The Coefficients 4 and Fig. 18. The Correction Factor
B as a Function of the Suction € as a Function of the Parameters
Parameter With an Approximation f and t#%%,

of the Velocity Distribution as
a Sixth Degree Polynomial.
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We can determine the coefficients a3, a2, a3, by satisfying

the following conditions with y = O0:
u=0; v=—y,(x) )
Pu_ U v du
ay’ dx v V.a—_l.j' (3.21)
Fu _ _ W OFu
o v gy’

/85
Then to compute them we will compile a system of algebraic equations:
a+a Fag=—1;-
gnin—1—=8+a,(n+ 1) (n—1) +a;(n+2) (n+1— )= —A; (3.22)
gnin—N(n—2—f) +a,(n+ Dan(n—1—106) $
+an+2)n+ Dn—2t) =0,

The index n is chosen from the condition of the best approxi-
mation to the velocity profiles with power assignment of the velo-
cities of the external flow and is connected with the parameter A
by the function

n=0,15 4 A.
- (3.23)

Then for the remaining characteristics of a boundary layer, simple
calculations allow us to obtain the following results:

for the thickness of the displacement flow

6*=__6 al az R a3 .
(n+l+n+2 l’n+3)' (s.20)

for the thickness of the impulse loss

a? a? a? aa 2a.a aa
6**=6*——6( i 2 3 et it NS 1. 723 ).
for the local coefficient of friction
To _ v
T =TT\t @+ Do+ (0 4 Dayl (3.26)

Formulas (3.22) - (3.26) allow us to compute the function F(f,
t%%), which we can linearize in first approximation, and then we
can integrate the impulse relationship (1.74) in final form.
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We should note here that Loytsyankiy's profile set (3.20) was
also used by A.P. Girol' to compute the characteristics of a boundary

layer in the presence of suction.
The Simultaneous Use of the Impulse and Energy Relationships /86

There are several methods of approximate calculation for a
laminar boundary layer in the presence of suction. These methods
are based on the simultaneous application of the integral impulse
and energy relationships and also on the use of a one-parameter set
of velocity profiles. 1In this sense, the methods we are examining
are further developments of the well-known Walz method [118] for
laminar boundary layer in the presence of suction.

The method of K. Wieghardt [123] uses the integral relation-
ships of impulses (1.34) and energy (1.37). We choose as velocity
profiles the profile set (3.1) proposed by Schlichting. In this
case we convert the impulse and energy relationships to the sys-
tem of equations

dH 1 du Re -
o =g g (H)UR**2+h(H)R"
** d - (3.27)
R HEL W Rev ol o bRy
=~ U v UL
Here Oz%) U='Tj_o—; vo""DOT'v Re—’:—v—;
__HH-=-Y
2D —eH
H) =— Bt
wny = — 221,
dA
N=3m
where
* o - o |
H=8%?r_" €= *'—y“ 5 H= 5e* °
(%) b
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T oU v
D=\ yl -7 d(a—*r) /87
ol 2 —
)1

In each concrete case, the system of equations (3.27) should
be integrated by the finite difference method.

To compute a laminar boundary layer on a porous surface in
the presence of sucticn, Wuest suggested using the energy equation
(1.37) instead of the boundary condition

ou du 0%u
U°(5§)_U—d—£+v3y—2' (3.28)
The velocity profiles were chosen in the form of (3.1). In this
expression we take the new functions
Fx(n)=-l-’exx)[l7%];
(3.29)
[ =
Fz(n)=F1-—sm[6;E]wiﬁ10<q<3,
As we can see from expression (3.29), the functions F; and F,; are
somewhat different from the functions used by Schlichting. Accord-
ing to Wuest, this change leads to the best results.

The Head method [73] for calculating a laminar boundary layer
on a porous surface in the presence of suction, is also based on
the integral relationships for impulses (1.34) and energy (1.37).

A fourth degree polynomial is used as a velocity profile.
On the outer boundary of the boundary layer the following
boundary conditions are satisfied
ou Ot u .
==z =0 — = lwithn=1, (3.30)
o= o and 7] withn
We introduce the notation
u
F: Yt
@)
— T o " (3.31)
Then the assigned velocity profile takes the form 88
A
=20 — 20 4 0+ (1 — 1) = Fo(0) + AGo (0. (3.32)
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The curves of the Ffunctions Fy(n) and Gy(n) are shown in Figure
1%a and the profile set for negative and positive values of the

p .

l } ’

a8 \ B I / "
12

- \

- 460\

\/O‘Go(’?) // ) Igs
.04 ) /f” T 04 )' 2
/ o(7)
) ,.//é
, - é{é ]
04 o8 Hm 0
a Ia-GZ(rz) o4 b b ﬁ

Fig. 19. Graph of the Functions Fg(n) and Go(n) (a) and the Set
of Velocity Profiles With Suction of a Boundary Layer (b) (Accord-

ing to Head).

shape factor 4 are shown in Figure 19b. With 4 = -12 the boundary

layer is separated.

The basic parameters in the method under examination are

(B ae B (B), 4ot (%)
U 6!/ 0’ U ay2 O, n= U Bys 0' (3 33)
- 6**2.52. t**=—006**
v dx ’ v

Using these parameters, we can write the impulse and energy rela-

tionships in the form

d %2
Ec(ﬁv )=g{l—(ﬂ+2)f—t**}; (3.34)

dH, 1 * *
dx—W;z—)—[QD—HF{I—(H—I)f_t*}—-—t*], (3.35)
v

§hde | . . .
where Hg = SEw 1s the ratio of conventional thicknesses of the

6%* \2 /0u\? Y
boundary layer; D=5(T) (@) d(ﬁ*—*) is the dissipation integral.
é
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In this case we use the boundary conditions

f= —m— g%,
. (3.36)
n= — m.

To facilitate calculations in references [73, 741, all the
auxiliary functions were tabulated and presented as diagrams con-
venient for practical use.

The Use of Integral Equations of Three Moments

In the first chapter in order to compute the three unknown
values H ¢ and f we composed a system of three equations which,
in essence, are a generalization of the equations for the zero-th,
first and second moments, discussed in reference [43], for a porous
surface in the presence of suction,

i i (3.37)

b 2htHy b,

1
HF“E?HQ

(3.38)

m+m+%m
C=—__ =

H, :

(3.39)

Hy= — SHs—2H,

4(”1—%Hi)' (3.40)

Wwe can write the equations of the first (1.85) and second (1.90)
moments in the form

a Uy b u”
E‘aﬁ(l—m“*;{f)“'ﬁf; (3.41)
df a U
d—x=—o'U(H—H¢t**—Hocf)+%:f, (3.42)

The range of variation of the shape factor H is comparatively
small. For example, for a plate A = 2.0 to 2.59. We assume that
in the equation of the first moment (3.41) the shape factor is
approximately equal to 2, i.e., to the precise value for an asymp-
totic boundary layer on a porous plate. Furthermore,using the
equation of the second moment to compute the function H(f, t%%),
we will subtract equation (3.41) term by term from equation (3.42)
and after several simple transformations, we obtain
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H=Hq—(2Hn—H‘)t**—Ho(%._g)f_ (3.43)

Assuming in this formula that £%% = 0 and that formula (3.43)
must correspond to the known interpolation formula, discussed in
reference [43], we can determine numerical values for the coeffi-

clents: Ho = 2.59 and Ho(g - e) = 7.55.

We can compute the constant X, according to formula (1.83)
using an asymptotic velocity profile in the boundary layer on a
porous plate (2.3). As a result of these calculaticns we find that
Hq:q.

Thus we can determine numerical values for the constant coef-
ficients and write the interpoclation formula in its final form:

H = 2,59 — 1,18** — 7,55f. (3.414)

A comparison of this formula with the data from the integration
of the equations for a laminar boundary layer on a porous plate
shows a satisfactory correlation (Fig. 20). Comparison of analogous
data for a porous wedge [98] showed that with t%% = 0.462 and f =
0.01675, the precise value of H was H = 2.03 and the approximate
value was H = 1.97.

i3

zjm

15 o0 N
2 0.2 0« ¢

Fig. 20. Comparison of the Results of Calculations According to
the Approximate Formulas (3.44) and (3.46) (Solid Lines) With the
Precise Solutions [62] (Dots).

The function thus obtained, H(f, t**)(Fig. 21), was compared
with the known approximate solutions. This graph allows us to
evaluate the degree of convergence of the obtained analytic formula
and the known approximate graphic functions.
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Simultaneously solving the equations of the zeroth and first
moments, we obtain

a : b :
t=g PU—@ + 2HHL S} (3.45)
/
We assume that ¢*%* = 0; then with the correlation of equation (3.45)

to the known solution [43]1, we can determine numerical values for
the coefficients: ¢ = 0.4408 and b = 5.48.

Using formula (3.44) and the values of the coefficients a and
b from equation (3.45) we obtain

§ = 0,22 4 0,56¢** — 1,18f¢** 4- 1,85f — 7,55f2. (3.46)

Comparison of the data computed by this formula with the precise
values of ¢ for a porous plate [62] shows a satisfactory correlation
in the interval of parameter values 0 - 0.5 (cf. Fig. 20). The
maximum error in this case does not exceed 5%.

Hi . - . - o P

4 6 f10°

Fig. 21. Comparison of the Values of H, Computed by Formula (3.44),
with the Data of Different Authors: ——— Shows the Data of [103];
----- Shows the Data of Yu.F. Kontsevich and N.D. Shal'kin; ---
Shows the data According to Formula (3.44).

It is interesting to compare the precise numerical data, com-
puted in reference [98] for a porous wedge, with the results of
the calculations according to the formulas we obtained. The com-
parision showed that for %% = 0.462 and f = 0.01675, the precise
value of ¢ was 0.488 and the approximate solution, computed by
formula (3.46), was 0.498. A comparison of the approximate func-
tions obtained earlier, with the results of the calculations accord-
ing to formula (3.46), is made in Figure 22.

Placing the value ¢ = 0 into equation (3.46), we obtain a form-

ula for the value of the shape factor fg(t*%*) at the separation
point of the boundary layer:
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Fig. 22.

with the Data of Different Authors:

(1,85 — L.18**)— V(1,85 — 1.18F**) + 4.7,55(0,22 + 0,561**)

I = 2.7.55 (3.47)
¢ T LFT
o '(:;’— —————
205 | T |
04 M/ =T
- i =
s - L )
| el e
//// 5T ///
02— . ////‘ //_/_ .- .
. Nl Pyl ==
7 ,/ »/
»7__74 - 7 T U P
0 i yd |/ 1. d__ [ R
-16 -12 -4 g 4 JHo*

Comparison of the Values of ¢, Computed by Formula (3.u46)

Shows the Data of [1031];

. Shows the Data of Yu.F. Kontsevich and N.D. Shal'kin; --- Shows
the Data According to Formula (3.46) and --+- Shows the Data of

[117].

For a nonpermeable surface according to formula (3.47), fg = -0.0875.

formula (3.47),

Figure 23 shows a comparison of the known data, included in /
according to the influence parameter t#*%* on the

value of the shape factor at the separation point of the boundary
layer.

tions of moments, since,
I B
/
N4
as 7
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To calculate the shape factor f we can use any of three equa-

qr2

008

/¥4

as the calculations obtained in this case
show, the results are very similar,.
In subsequent determining calculations,
we will use the equation of the zero-
th moment in the following form:

df U v ®¥ (3.u48)
A U+ e—a

Fig. 23. The Values of the Shape
Factor at the Separation Point of the
Layer fg as a Function of the Suction
Parameter t#%%: "1" is Given According
to the Data of [22]; "2" According to
the Data of [13] and "3" According to
the Data of Yu.F. Kontsevich and N,
D. Shal'nik.



Here

F(, 1y =20 (F, ") —
—202 + H{, t**) . (3.49)

Substituting values of H and ¢ into formula (3.49), we can demon-
strate that the function F is a linear function of the shape factor

fs i.e.

F(f, t2) = A@¢**) 4 B*M],
A(t**) = 0.44 4 1,12¢/**, B = 5,48, (3.50)

Comparison of the obtained function F(f, t**) with the earlier
known approximate graphic functions (Fig. 24) allows us to evaluate
their concurrence.

Since F(f, t%%) is a linear function, then the integral of
eqation (3.48) can be written in the form
U (»
UFm (3.51)

) % (x) j *k B\ X
flr)y = ——%  [A — 2% (x)) U ()} dx 4 C
O = W an? . A

Rl
S| e
Q\_\ \\4.\

N N

<
N

Xl TS

/./
/
//

o S B ;
-12 -8 -4

Q |
)

8 yi0

Fig. 24. The Function F(f, t*%): is According to the Data of
[103]; ---+ is According to the Data of Yu.F. Kontsevich and N.D.
Shal'kin; --- is According to Formula (3.50).
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v=2~=

the integration constant C

We place the coordinate system in such a way that when x = 0,
. Then from the condition of the finiteness of f, when x = 0

0, and f(0) =

4
=

Figure 25 shows the

shape factor at the leading critical point as a function of the
suction parameter.

with a prescribed normal component of velocity on the porous surface

Computing the values of the shape factor f(x) according to
formula (3.15), we can determine the remaining characteristics of
a laminar boundary layer:

6**=l/

To

i
7 e

V‘t'*

n=

vi(x)
Ux)®
&% = §**H (. t*‘);

PAY
—_— = LTGW é(f. t**);

(3.52)

In order to calculate the characteristics of a boundary layer

of a body vy, we must use the method of successive approximations.

19

o2

004

Fig.

/
=
//’/ .
2 "/ s
>
0 Q2 a4 t°°
25. The Values of the

Shape Factor f(0) at the Cri-
tical Point as a Function of
the Suction Parameter ¢%%:

Hl"

ing to the Data of [13];

Shows the Function Accord-

"2"

According to the Data of Yu.

F.

Kontsevich and

"3" Accord-

ing to the Data of [117].
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Fig. 26. The Function f;(0) as
a Function of the Suction Para-
meter #¥%F,
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Taking in the first approximation the expected change in the para-
meter £%%, we can calculate by formulas (3.51) and (3.52) the funec-
tion 6%%* and by the values of this function, since vy is given,

find the change in the parameter ¢%% in the second approximation.
Repeating the process of successive approximations, we can calculate
with sufficient accuracy all the characteristics of a boundary

layer.

As a first approximation of the expected change in the para- /96
meter t%% we should take the corresponding values for- a porous
plate with a given distribution vy for a body with a porous surface.
The necessary values of t*%* for a porous plate should be determined
in the following way. First we should compute the values of f;(0)
according to the formula

Y
U
hO =—%=, (3.53)
-
and then determine the expected change in the parameter ¢%*% in first
approximation according to the graph (Fig. 26) [17]. After com-
puting the values of the shape factors f and t*% with the necessary

accuracy, we can determine the remaining characteristics of a
boundary layer according to formulas (3.52).

The method under discussion can also be used to calculate the
characteristics of a laminar boundary layer and the function vg(x)

av

according to the prescribed valuez of the functions &%%, U and T

If the enumerated values are prescribed, we can calculate the func-

af

tions f and 75 and from equations (3.48) and (3.52) determine the

unknown functions t%% and vg.

In practice, the case 1s interesting when the suction rate is
roughly proportional to the thickness of the impulse loss of the
boundary layer, i.e., yj §%%, In this case, t**% = £y%% = const,
and equation (3.51) is simplified and converted to the form

0.44(1 —261 av
fx) = —="_""<%]1 4aU [, .5
IR R (3.54)

We will also examine the particular case of uniform suction
of a laminar boundary layer on a plate [20]. In this case vy =
const. and the equation of the zero-th moment can be converted to
the form

s~ v, T
= YT = (3.55)
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Using equation (3.55) we determine the characteristics of a
laminar boundary layer with uniform suction along the entire sur-

face of the plate. We now introduce the new variables /97
§= (—Uo aﬂ.x_v t” i 006“ -
U v ’ = v

and transform equation (3.55)

¢ dE ~t =L (3.56)

We know that with an arbitrary distribution of the suction rate
along a porous plate, the coefficient of local friction is

r - had
s=G—d, (3.57)

where ¢y = 0.22; d = 0.56 and t** < 0, A comparison of the results
of the calculations according to formula (3.57) with the results

of numerical integration of the equations for a laminar boundary
layer on a calculating machine showed that in the interval of ¢#*#%
values from 0 to -0.5, the maximum error does not exceed about 3%.

Let us now transform equation (3.56) taking formula (3.57) into
account. After separating the variables and determining the inte-
gration limits, we obtain the simple integral equation

£

t w
Lya—ar Jdg (3.58)

with the boundary conditions
‘”=f}ﬁh§=g
t" =0 yitht = 0.

Equation (8.58) is solved in the quadratures

t Lo !
t= 17— d)gm,m_

g,d)'”‘ (3.59)

In reference [78], a precise solution was found to the problem
of determining the characteristics of an incompressible laminar
boundary layer with uniform suction on a porous plate by numerical
integration of the Prandtl differential equations. Figure 27 com- /98
pares the results of the precise solution (the dots) with the
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approximate values, computed according to formula (3.59) (the line).

Use of the Targ and Shvets Approximate Methods

Approximate methods which are simple and very
similar in idea, for calculating a laminar boundary layer for a
non-porous surface; were developed by M.Ye. Shvets [54] and S.M.

Targ [51]1. In reference [53] these methods were applied to a laminar

boundary layer in the presence of suction.

Let us examine both these methods as applied to a laminar

boundary layer in the presence of suctlion. Using the equation of
continuity (1.28), we exclude from the basic
i - o Prandtl differential equation (1.27) the
/ transverse velocity component and reduce
0.4 . the equation to the form
of Pu , dU éu
/ V672—+UE==H5;+
0.2 ; 5 (3.60)
u u
//VZF .
T . . . .
0 02 T ] The right-hand side of this equation
is replaced by its approximate value, which
Fig. 27. Comparison was obtained as a result of replacing the
of the Precise and velocity with its approximate value in the
Approximate Solutions form of a polynomial. Afterwards, both
for Uniform Suction sides of the obtained equation are integra-
of a Laminar Boundary ted twice over y with satisfaction of the
Layer on a Plate. usual boundary conditions.

Targ proceeded from an initial velocity profile in the form
of the third degree polynomial

l%=—l2—(3n—n’)- (3.61)

Y

where n = s
Substituting the velocity profile (3.61) into the right-hand
side of equation (3.61), we obtain

o |, ,,dU Ud_U. 2 4
'6—yz'+ d—x‘==ﬁ'dx(18n — 3n* b 1)

3 vl (3.62)

~~~~~~ (6n2 —70* +n%) + 5 - (1 — ).
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Equation (3.62) was obtained as a result of an approximate
substitution of the acceleration profile in a certain cross section
of the boundary layer in the presence of longitudinal pressure drop,
by its value for an egquivalent plate.

After double integration over y of the differential equation
(3.62) with satisfaction of the adhesio- condition and the boundary
conditions (1.19), we obtain in second approximation the velocity
distribution across a laminar boundary layer in the presence of
suction:

u 1 dU & (366 2y O e ) 1
T=teE v (ot gt e g b
3 Ub dd (26 | 7 L s
4‘%'?'&;(55"*‘5“‘*36“"'56")* (3.83)
§ 3 | .
4‘%?(qu-—3;ﬂ‘—40-

The process of finding a third approximation is very unwieldy and
would not significantly Improve the precision of the solution.

It remains for us to find an ordinary differential equation to
determine the only unknown parameter, the thickness of the boundary
layer., According to S.,M. Targ, to do this requires for the velocity
profile (3.63) satisfaction of the following condition on the outer
boundary of the layer: u = U when y = 8. As a result we obtain the
ordinary differential equation

Uds? ..dU 8 3
vdx +5‘643;': —gvo%==23.27. (3.64)

We integrate equation (3.64) by the method of successive approxi-
mations. In the first approximation we examine the boundary layer
on a nonpermeable surface (i.e., vg = 0). In this case equation /100
(3.64) 1s integrated in the quadratures:

89321 f..
v [U (x)'5.64 qu (§) dg‘ ( 3.6 5 )
)

M.Ye. Shvets? computes the zero-th approximation, by substitu-
ting u = 0 into the right-hand side of equation (3.60), and then
by repeated double integration over y obtains an expression for the
velocity profile. For a laminar boundary layer in the presence of

2 A certain modification of this method was discussed in reference

[u].
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suction, analogous computations in the second approximation allow
us to obtain

2 1 U ds
Tl} "5171'%%(’1‘—12'\2 ) —gz 5z =M%
4_1n$6v.,m2 . (3.66)
Satisfying the boundary condition du 0 when y = §, we obtain

oy
the ordinary differential equation for determining the thickness
of the boundary layer:

3 du & , 1 Ub ds_ 1 5

P el bRty ?vo;-=l. (3.67)

The equation thus obtained differs from the analogous equation
(3.64) only in terms of coefficients.

Using Newteon's law and expressions (3.63) and (3.66), we obtain
a corresponding relationship for determining the coefficient of
local friction:

o dU & U0
g = 0261 g (E'—*“‘G?l—”ﬂ ) (3.68)
o L v (&, 0
U 3 Us\dx'w _T) (3.69)
To determine the separation point (tg = 0) from expression

(3.68) and (3.69), we obtain

‘;Z & +621-—15]0°6 : (3.70) /101
dU 6? 0d
o v Him =0 (3.71)

We will now examine in more detail the particular case of a

plate with %% = 0) [3]. Taking the expression u = i as a first

approximation, we obtain in the second approximation

N ¥ Uy, (y?
U=%tu: Té(y_sf)+§7('5—y)' (8.72)

We can find the thickness of the boundary layer &§(x) from the
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s AN d . .
additional boundary condition Z¥ - 0 when y = 8., TFrom this, taking

3y
§(0) = 0 into account, we obtain by successive approximations
dé 8v o
G tiTs (3.73)
2v Y 1)
S——in(1428§]=4-2
% (+2v) i * (3.74)
v,6

Further on we will examine the case —%—- << 1. In formula (3.74)

we expand the logarithm into a series and, limiting ourselves to
the first three terms, we obtain

e P16V,
6 BVGL_IGU' (3.75)
. vx , 8 1

b=ty vy Ur (3.76)

It follows from formula (3.76) that for an asymptotic boundary layer

v
Qas'— a‘-

From these expressions we can obtain approximate asymptotic
functions for the velocity profile and the friction stress

das_ vy 1 (vey\® (3.77) /102
U v 4\ v’
Tas= U2 (3.78)

Comparisons showed that expression (3.77) was very close to
the known precise solution (2.3), and the asymptétic value of the
friction stress on the surface of the plate (3.78) completely agrees
with the precise value.

A Nonstationary Boundary Layer

In the coordinate system associated with a moving body in an
incompressible fluid without rotation, the basic differential equa-
tion of motion and the equation of continuity for a nonstationary
laminar boundary layer have the form

Ou Ou Ou oU 0%
at"'lla"‘ .

0-5;=U37+v(3_y,, (3.79)
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On a porous surface of a body in the presence of suction, the
following boundary and initial conditi-ns must be satisfied:

u=20, U= —y, with y=0;

u->U(x,f) with y-> oo

u=Ux,y) with t=0.

(3.80)

The first equation of system (3.79) with the help of the
second, can be converted to a form which will be more convenient
for further calculations:

I —u

0 aUu 2 —
o +a [u(U—u)]+B;—(U—u)—v64—(U 4 _

o 0. (3.81)

Multiplying both sides of equation (3.81) by yk, where k = 1, 2,
3, «..5 We Wwill integrate it over y from zero to infinity. Since

(3.82)
¢
after simple transformations we obtain /103
g k(Ur—u)dy_pi wyku(U__u)d -+ ¢ v 9 Uu dy +
ot ox Y Y ay[ —uwdy +
o 6 b (3.83)
Ul F L oU—u
+5;nyU~uMy*VJM—~@Tde=Q
6 i

We will now examine the first term of equation (3.83), assign-
ing to the parameter k values equal to 0, 1, and 2 respectively.

with k=10
'aa_tf(U—u)dy=£—Uf(1_%)dyza((a/ts') ; (.3.84)
[
with k=1 ’
%JyW—mmy=ﬂﬁ%£3; (3.85)

0
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withk=2

o«

9 L)
an ya(u_u)dy=-"’_(ﬁ§é_f_) (3.86)

The remaining terms of equation (3.83) can be transformed
analogously to the way it was done for a stationary boundary layer.

According to V.V. Struminskiy [49], for a nonstationary flow
Wwe can generalize the equations for a laminar boundary layer on a
porous surface in the presence of suction. We assume that as
velocity profile sets in the cross sections of a nonstationary
layer we can use profiles determined by the expression

U ol L
b= (5" ,t), (3.87)

with the shape factor f and the value &%%* as functions of the co-~
ordinate & and the time Z.

This assumption corresponds to a quasistationary method for /104
examining phenomena in a nonstationary boundary layer. We note

that for a nonstationary boundary layer the shape factor

(1 U, aU
f=7(~g'§+a;‘)' (3.88)
For the particular case k = 0, equation (3.83) is converted to the
form
0,07 +vL 4+ W oH G0+ M 0l) =
U 1 - (3.89)
- (& ) EGD =2
Here
OG0 =H, )+ 27 ,
(3.90)

VU

ot ' e 1w
6U+6U ] U ot
Vata

M(x, 6 =
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oU\? U AU
Vet (’aT) —U e~V 5ar
ALY G 7
ox ot
FUO) = (R (™ =202 —H (G N
W e ub
c_ w_v t v .

For a nonpermeable surface, equation (3.89) becomes the equa-
tion of V.V. Struminskiy [49]. Due to the assumption of the quasi-
stationarity, the values of the functions , H and F have the same
form, as in the case of a stationary boundary layer, since they are

time functions only through the shape factor f. In connection with
this fact, we can use interpolation formulas for £, H and F in our
calculations. Using these formulas, we obtain
O 1 - b
(F.t )=Ho_(2H0;a-H4)t —3H, T =°) (3.91)

and convert equation (3.89) to the form

[Ho—-(wo —H " — 3H, (% —e) f]g—i— suls

4 Nx, z)[Ho —(2H,—H)t" -Ho(b -%) f] 4 M, ) f = (3.92)

ou 1 oU . e oo
=(5;+U"37)“A“"“B“ =27,

where M(x,t) and N(x,t) are prescribed functions.

This method for computing the characteristics of a nonstation-
ary laminar boundary layer can be used, if f < 0.06. However, 1t
is not sufficiently precise for the flow in the region of separation
of the boundary layer. In this case we must obtain more precise
values for the functions ¢, F, H and . To do this we can use the
results of the precise calculations by Terril [110].

Later we will examine the integral impulse relationship (3.83),
which for the case kK = 0 we can write in the form

1 88, 1 0U,, 66" ., 1 U ,.. “y b v
—=0 "@‘a—x +L7'5;(25 ¢ 6™ by

T TR
v (Ou - T
=U’(6y),,_o=—qb’. (3.98)
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In this relationship the values of u, v, U, §%, §*%% and 7,
are functions in the two variables x and t.

According to L.A. Rozin [44], as the conventional thickness of

the boundary layer in expression (3.93) we take the thickness of the

displacement loss 6%, This allows us to linearize with the best

approximation relationship (3.93) when we integrate it. We now con-

vert the integral relationship (3.93) to the form

%tE-H/(K 4»2f'-a—K—)af' —[a—g L 904

o Jox =| o '@ (3.98)
‘*"U(STQ"lg—"g*,(,j'%)K*Q%];'gt—xfjf‘*?m("*‘ﬁ')'
Here
fe Qf-z : C-‘.___é{g((':/?)]”‘o, K=§.—:-=I-;ll—;
’ ‘ (3.95)

Using the hypothesis of quasistationarity, from the equation

f = [H?, C'=;H:‘K=ili-, ¢ =t"H:

Q5™ K107 4 e (3.96)
f = : C = Ty v — 6 " .. Lo .
v [6@”6)]Fw' H'-Sw, =1

we can calculate the necessary values for a nonstationary boundary
layer.

The values of f, z, H and t®*%* in equations (3.96) were calcu-
lated for different values of the suction parameter %%, assigning

a shape to the velocity profile in the cross section of the boundary

layer in the form of a sixth degree polynomial (3.13).

Analysis of the obtained functions C*(f*,¢t%*) and K(f#*,¢%)
(Fig. 28) showed that these functions can be linearized with rea-
sonable accuracy, i1.e.,

K=a1(t'). (3.97)
= Y.
B =0y (t) + o () (3.98)

The function a1(t%*) = Kg(¢t*) is shown in Figure 28b by the
broken line. TFigure 29 shows the curves of the functions ap(t#*)
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and ag(t*). The straight lines (3.98), approximating the function
c*(f%,t%), were drawn through the separation point of the boundary
layer and the values of % for the case of a plate (f* = 0).

Taking expressions (3.97) and (3.98) into account, we transform
the integral relationship (3.%4) to the form

or _rog o 1 _ U 1
Ftal s l"‘ —-—29-1 oc,U(a —45 7] *
3.99)
dao, of* . (
. -2 . = _IfF= ).
+ 20,82 26” % F =29, +1)

For a prescribed velocity distribution on the outer boundary
of the layer, equation (3.99) can be integrated by known methods.
The corresponding system of characteristics 1s easy to determine.

!. —_— - " — . —— - m— -

T et
T T ﬂ7/)
t5-10 i y/
}/W )44
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5;/’:?:2 20 Fig. 28, The Dimensionless Coefficient
%¢44////::%Z of Friction ¢® (a) and the Ratios of
Eﬁif//////ﬁb the Conventional Thicknesses of the
0 »/é A%é,zﬁ‘ Boundary Layer K (b) as a Function of

< the Shape Facter f* and the Suction

-20 - ;
a Parameter ¢¥.

(=3
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In a number of cases the solution can be reduced to quadratures,
but in the more complex cases approximate methods must be used.

We can compute the value of the parameter fs at the separation
point of the boundary layer (g% = 0) from expression (3.98)

a .
ﬂ"’i (3.100)

Figure 30 shows the curve of the function f"(t“)
After computing f* and consequently 6% for each value of t%*,
Wwe can determine all the remaining characteristics of a nonstation-

ary laminar boundary layer in the presence of suction.

We will now examine the problem of the formation of a non-
stationary boundary layer in the presence of suction or blowing on
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a stationary circular cylinder, which is suddenly set in uniform

motion. We will determine a distance o or a time interval fg be-

tween the beginning of the cylinder's motion and the moment when

an eddy in the trailing end causes separation. In the particular /108
case under examination the velocity distribution on the outer

boundary of the boundary layer [44] is

" . [x
U(x't)'—2u°sln(7{)' (3.101)
As a result of simple calculations we obtain
ou U, x ou o
= a—cos(—), E_O’ 797—0'
(3.102)
-aU— UO X\ oQ _ Uo f X
Q—a—x— —a—cos<;1—), 67—-—2Fsm(?)a
a,o — == £ - -

04 ‘%‘ - 12 \\ - — ,
> § N 1
== \\\\\J

0 fe 08
~! g 2 A

!
<
<
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Fig. 30. The Shape Factor fg at
the Separation Point of the Layer
as a Function of the Suction Para-
meter t%.

Fig. 29. The Coefficients a)
and a, as a Function of the
Suction Parameter t¥,.

From the trailing critical point (x = ma) we derive the or-
dinary differential eguation

af U . Us
=4 — —4 + 3.10
=42t (14 2 —a) [ — 42 (@ + 1), (3.103)

Using the initial condition f* = 0 when ¢ = 0, we obtain the
solution to equation (3.103) in the form

+7 Ut
F= —°‘2——{1 —exp [4(1 <l=2ac1—a3)]——]}
L+ 22 —a @ (3.104)
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Since at the moment of separation formation of the boundary
layer at the trailing critical point ¢ = ¢4, and o = Ugtg, we obtain
from expression (3.100)

142 4+ 24
%
]
1] 4 —¢°
“’( *a )

After determining the values of the coefficients o;, oy and ajz,
as a function of the parameter ¢%, we will determine from expression
(3.105) the path followed by the circular cylinder before the moment
when separation of the boundary layer begins and the eddy forms.
Computations were made for negative values of ¢%*, corresponding to
the presence of fluid suction from the boundary layer. From ana-
lyzing the results of these calculations, it follows that fluid
suction from the boundary layer allows us to extend to a significant
degree the path of the circular cylinder prior to the formation of
the eddy at the trailing critical point.

s a wan—
expl4(l 4 20; — o)) - = (3.105)

For a nonpermeable surface, i.e., when t% = 0, we find from
equation (3.105) that o = 0.30a. This value is practically no
different from the value ¢ = 0.32a, calculated by the third approxi-
mation to the precise solution.

The method under discussion was developed for a plane boundary
layer. With the help of the known transformation of Ye.I. Stepanov
[48], it is easy to calculate a nonstationary laminar boundary layer
with longitudinal streamlining of the body of revolution. In this
case we must supplement the right-hand side of the integral impulse

1 dro

relationship (3.99) with the term 2ar7u2}L”!,which takes into ac-
)

count the lateral curvature of the body of rotation.

S1

/1089




CHAPTER 4
A THREE-DIMENSIONAL BOUNDARY LAYER
A Boundary Layer and the Resistance of a Plate with Sl1ip

We will now examine streamlining with the slip of a flat plate
of infinite length in the presence of fluid suction from a laminar
boundary layer by a uniform flow of viscous incompressible fluid
[31]. The velocity vector of the external flow Uy forms an angle
B (Fig. 31) with the leading edge. We will use a Cartesian coordi-
nate system in connection with the plate. The Ox axis is directed
along the flow perpendicular to the leading edge, the Oy axis is
directed vertically perpendicular to the plane, and the 03 axis is
directed laterally parallel to the leading edge of the plate,.

In this coordinate system the equations for a laminar boundary
layer and the equation of continuity (1.16) for the case of a plate
will have the form

Ou , du u
“ox Tl = Ve

ow, o _ P (4.1)
“or TP =vVai |

Ou , Ov

axtay =0 '

where u, v, W are the longitudinal, lateral and transverse velocity

components in the boundary layer.

In the presence of suction of a fluid across a nonpermeable
surface of a plate, the following boundary conditions must be
satisfied:

u=w-=_0,
u = U, cosp;

withy=0;

withy - oo.

U= —1y(x)

w = Ugysinp (4.2)

In the first boundary condition vy denotes the suction rate of a
fluid across the surface of the plate.
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Using the change of variables
u=Uocosﬁ
we can reduce the first equation

of system (4.1) to a known Blasius
differential equation

d® 1 d?
d$'+ dﬁ =0, (4.4)

and we will convert the boundary
conditions to the form

f,=GC; %=0 withn=0;
(4.5)
::—:l"—»oo with y-—>oo.

Fig. 31. A System of

Coordinate Axes for Stream-

lining of a Plate with Slip. With satisfaction of the /112
boundary conditions (4.5) equation

(4.4) was integrated on a computer. Detailed tables of the functions

Ffo(n) and its first, second and third derivatives were presented in

reference [62] for different values of the constant C. From the

third equation of system (4.1), the equation of continuity, we have

_ Uocosp dfo
v 2V-R:[ 3— fo("'l)]- (4.6)

Using expression (4.6) and the first boundary condition (4.5),
we can compute that

_ 200 VE.
C—-Uocosﬁ Re. (H.7)

The following function satisfies the second equation of system (4.1)

w = const u, (4.8)

Satisfying the second boundary condition of (4.2) we obtain

const = tan g . (%.9)
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From equations (4.8) and (4.9), we find that

dfo

) = — UgsiDB

(4.10)

It follows from the last expression that the flow rate on the bound-
ary layer in the presence of fluid suction across the surface of
a plate agrees at all points with the direction of velocity of the

external flow.

We will not determine the hydrodynamic forces acting on the
permeable flat plate with slip and the presence of fluid suction

from the boundary layer.

The coefficient of the tangential friction force 1is
¢ (d
2v u
—_ = dx.
Com 2 (ay),,_,
o

From expression (4.3) we compute that

(5 ot ()l 55

oy

Substituting expression (4.12) into (4.11), we find that

3
2 —_—
4 (Zn_f:) cos? ]
C n=0__

VR

Xe =

U x
where R, = —%—»is the local Reynolds number.

The coefficient of the lateral friction force is

2v g dw
= ——— =— dx.,
Ck Lgan(ay)wﬂ

From expression (4.10) we compute that

<r9w> = {J,sin d2f°> / UoCOSB
pdad - =
0y ) y= 0 l \d‘] —0

EL

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

J==—



Substituting expression (4.15) into equation (4.14), we obtain that

2
4 (%—fg) sin B cos'/?
C,, = 1 /=0
2,

, = i —. (4.16)

The value of the coefficient of total friction force is

4(%2—1;%) cos'/2p
Cx = Cy, cosP + C,, sinp = n=0 (4.17)
VR,
Cs
In Figure 32 the solid line corresponds to 1 as a function
2
cosP

of the local Reynolds number R, for different values of the suction
parameter C (cf. expression (4.7) for a laminar boundary layer),
and the broken line corresponds to a function for the coefficient
of turbulent friction of the plate according to Prandtl-Schlichting
taking the slip into account

C. 0,455

cosVB  (1lgRe)*™® ' (4.13)

From an analysis of the data shown in the graph, it follows that

with an increase in the Reynolds number the value of the coefficient

/11y

C
ﬂ changes equidistantly to the function of laminar friction
cos?f
according to Blasius (¢ = 0) and an increase in the suction intensity

also leads to an increase in the resistance of laminar friction of

the plate in the presence of slip. In the particular case of a non-

permeable plate (¢ = 0), the results obtained agree with the solu-
tion of V.V. Struminskiy [501].

L 1~~~
cost ﬁ

allows us to evaluate those
limits in which suction of a

T~ laminar boundary layer can lead
k <

— N Fig. 82. The Coefficient of
. Friction with Streamlining of a

’ g
3 \ ) )
az%ﬂ ESESESSS Plate With Slip as a Function

/l

i)
P
»

of the Local Reynolds Number in
the Presence of Suction.
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to a decrease in frictional resistance. Since it is known that the
profile drag of wings, streamlined with optimal angles of attack,
is only 10-20% greater than the friction resistance of a plate, the
obtained data (Fig. 32) can also be used for an approximate evalu-
ation of the profile drag of the slip wings.

The Boundary Layer of a Plate With Parabolic External Flow

No one has yet succeeded in obtaining the solution to the equa-
tions for a three-dimensional boundary layer, formed with the motion
of a body of arbitrary shape, in its general form. In connection
with this fact, we will limit ourselves to the integration of the
equations for a three-dimensional boundary layer on a permeable
surface of a plate with a parabolic extermnal flow in order to clarify
the basic picture illustrating the influence of fluid suction on /115
the nature of secondary flows in the layer. This approach allows
us to obtain a precise solution to the problem and to analyze the
possible influence of fluid suction across a permeable surface on
the secondary flows in a three-dimensional boundary layer.

We will examine streamlining of a semi-infinite plate with a
permeable surface in the presence of suction by a parabolic exter-
nal flow [32, 30]. By a permeable plate we will mean a plate
streamlined by a fluid, on whose surface there is only a non-zero
normal velocity component, i.e., wy = 0 and vy # O.

Later we will use a rectangular coordinate system, whose origin
is located at the leading edge of the plate. The x axis will be
directed along its surface perpendicular to the leading edge, the
Yy axis will be normal to the plane of the plate and the 2 axis will
be perpendicular to the plane x20y. The velocity components for a
parabolic external flow are

U=const; V=0, W=a-+bx,
(4.19)

where g and b are constant values.

In this case the streamlines of the external flow are parabolas
and the current has a constant vorticity with a vorticity vector
directed along the y axis. The Helmholtz relationships for an eddy
are satisfied. In addition, the velocities are not a function of
the coordinate. Therefore, the system of equations (1.16) is signi-
ficantly simplified:

_ai_}_vgu__-v-ai
“ox oy = Vo
P _ o
_a;=0, N (4.20)
ow ow ow |
u—a;——}—v—@——bU:vW,
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ou ov
o Ty =0

and the boundary conditions take the form /116
u=w=0 =—1Uy with ¥ =0;
4,21
u-U; w->a+brewithy = oo, ( )

Using the change of variables

u=Uhtx n=y)/ —-,

we can reduce the first equation of system (4.20) to a Blasius dif-
ferential equation

l »
f’” +_E fofo = 0 ¢
( 022)

with the boundary conditions

fo=C  [=0withn=0;
(4.23)
fo~>1 withn—oo.

Equation (4.22) with boundary conditions (4.23) was integrated
on a computer by Emmons and Leigh. Detailed tables of the functions
foln), Foln), fgln) and f¥'(n) were given in reference [62] values
of f£(0) varying form 1.2385 to w .

From the equation of continuity of system (4.20) we obtain

~—

U
v=%-7|/:j_"[f.,(0)+g(n)l, (4.24)

where

n
g = [ nfy(n)dn, (4.25)
o

After integrating relationship (4.25) by parts, we obtain

nfo — & = fo () — £, (0). (4.26)
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If the velocity component parallel to the leading edge of the
plate can be represented in the form

w = aw, () + baw; (M), (4.27)

then the third equation of system (4.20) can be given in this form: /117

. 1 . ) .
o+ 7mfo-—g—fo<0>1wo}+
(o, 1. & - (4.28)
+blw1+7[nfo—g—'fo(0)]w1—fow|+l};-=0.
Using relationship (4.26) we convert equation (4.28):
ay . 1 '2f0(0)] . N
—lw; - = I — w,s + b{w + = —_—
x{ ’ Qfo[ fo 0} ' 2f°[l (4.29)

_ Q_f;o(o)] w, — fo, + 1} ~0.

Formula (4.29) is indentical over x and consequently, the values
of wg and w; must satisfy the following equations:

w;—{——;—foll—-—%(—o)Jw':O;

fo v (4.30)
. 1 2fe(0)] . .
w,+?f0[1—— ff°o( )Jw, + fge, +1 =0 (4.31)
with satisfaction of the boundary conditions
w, = 0; w, =0 withn=20
(4.32)

w, > 1; w—~>1 withn—oo.

Equations (4.30) and (4.31) with boundary conditions (4.32)
were integrated on a Minsk-1 computer for the following values of
fo(0): 03 0.5; 1.5; 2. The results are shown in Table 9. We should
emphasize that for the particular case fg(0) = 0 these results
agree with an accuracy to three decimal places with the data of Loos
[eu1d.

It follows from equation (4.30) that with fluid suction from
the boundary layer [f(0) # 01 the velocity component of the second-
ary flow wg, caused by the constant velocity component in the lead-

ing flow W = a, can not have the same profile as the velocity com-
ponent u. In other words, with a parallel leading flow, approaching
98
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TABLE 9. THE FUNCTIONS wgy(n) AND w;(n)

fo (0),
0
1} 0,5 1.0 1.5 2,0
we (M)
0 0,0000 0,0000 0,0000 —_ —_
0,4 0,1038 0,2084 0,0016 — —
0.8 0,2072 0,4751 0,0042 - —
1,2 0,3096 0,8127 0,0084 — -
1,6 0,4096 0,1232 0,0150 - —
2,0 0,5055 0,1741 0,0252 —_ —
2.4 0,5954 0,2339 0,0404 — —
2,8 0,6772 0,3022 0,0621 — —
3,2 0,7497 0,3773 0,0921 - —
3,6 0,8116 0,4568 0,1320 — —
4,0 0,8626 0,5379 0,1828 —_ —
4.4 0,9030 0,6175 0,2451 — —
4.8 0,9338 0,6925 0,3186 — —
5,2 0,9565 0,7603 0,4018 - —
5.6 0,9724 0,8194 0,4924 —_ —
6,0 0,9831 0,8687 0,5870 — —
6,4 0,3901 0,9083 0,6347 — —
6,8 0,9944 0,9388 0,6821 — —
7,2 0,9969 0,9614 0,7739 — —
7,6 0,9984 0,9775 0,859! — —
8,0 0,9992 0,9884 0,9350 — —
8,4 0,9996 0,9955 1,0000 — —
8.8 0,9998 1,0000 — — —
9,2 0,9999 . - — —_ —
9,6 1,0000 —_ — — —
w; ()
0 0,0000 0,0000 0,0000 0,0000 0,0000
0.4 0,4894 0,4034 0,3427 0,2971 0,2609
0.8 0,8270 0,6913 0,5972 0,5259 0,4684
1,2 1,0339 0,8773 0,7716 0,6915 0,6262
1,6 1,1385 0,9828 0,8817 0,8056 0,7427
2,0 1,1714 1,0318 0,9454 0,8811 0,8270
2,4 1,1610 1,0458 0,9787 0,9292 0,8867
2.8 1,1298 1,0420 0,9940 0,9591 0,9282
3,2 1,0935 1,0314 0,9999 0,9772 0,9562
3.6 1,0614 1,0205 1,0014 0,9877 0,9744
4,0 1,0369 1,0120 1,0013 0,9936 0,9857
fo (0)
n
0,5 1,8 o 2,0
4,4 1,0204 1,0064 1,0008 0,9969 0,9925
4,8 '1,0104 1,0031 1,0004 0,9985 0,9962
5,2 1,0049 1,0014 1,0002 0,9993 0,9982
5,6 1,002} 1,0006 1,0001 0,9997 0,9992
6,0 1,0008 1,0002 1,0000 1,0000 0,9997
6,4 1,0003 1,0001 —_ — —
6,8 1,0001 1,0000 — —_ -—_—
7.2 1,0000 — — — —_




the flat plate at an arbitrary angle, the direction of the flow in

the presence of fluid suction from the boundary layer across a /119
permeable surface coincides with the flow direction in the leading

flow., It is obvious that in a boundary layer of a permeable plate,
lateral flows arise analogously to the case of flow without fluid
suction from the boundary layer, but in the presence of a pressure
gradient on the outer boundary of the layer.

In the particular case when the fluid is not sucked from the

boundary layer [f((0) = 0], the function wg = f'(n) satisfies equa-
tion (4.30) and boundary conditions

2 (4.32). Then the velocity component
of the secondary flow wg has the same
profile as the velocity component of
the longitudinal flow; the directions
of the streamlines in the external
flow coincide with those in the bound-
ary layer. This phenomenon was first.
observed by Sears [106].

d f We will now find on the one hand,
Fig. 33. A System of Coor- the connection between u and w, and on
dinate Axes With Stream- the other hand, that between the velo-
lining of a Plate by Para- city components ¢t and u along the
bolic External Flow. tangent and normal to the local direc-
tion of the external flow (Fig. 33).
We will examine in detail the case when the coefficient a = 0, i.e.,

when the streamlines are perpendicular to the leading edge of the
plate. We will denote by © the angle between the direction of the
external flow and the positive x axis. Then

[ =ucos8 -+ wsing;
(4.33)

n = wcos®— usinB, (4.343) /120

Since a = 0, the function u = Uf§(n) and T = VU2 + b2x2, the local
velocity of the external flow, then equations (4.33) and (4.34) can
be written in the form )
, bx \*
R ALY

=

F H
l-k(%%) (4.35)
n b wm—7fM
.—7—“-:7' bx\'2 ’ (4.36)
'+ (7)
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Furthermore, we will express the velocity components ¢ and »n
by the angle © for the external flow. Since

—— hsmy
then
%=lw\(n)—f{,(n)l§i-n2£@' (4.38)
7;‘_=f6(n)(1_sinz@)_;._w‘(q)sinze. (4.39)

Using the results of computations of the functions w;{(n) (cf. Table
9), we computed according to formulas (4.38) and (4.39) the profiles
of the normal and tangential velocity components relative to the
external flow with fluid suction from the boundary layer across the
permeable surface of the plate. In these calculations we used the
values of the functions computed by Emmons and Leigh [62]. On the
basis of these data with the angle © equal to 0, 15, 30, 45, 60 and
90°, for the case of suction, the curves shown in Figure 34 were
constructed.

With fluid suction from the boundary layer across a permeable
surface of the plate, which is characterized by the value fy(0) =
1.0 (Fig. 34a), the profile of the tangential velocity component
varies comparatively little with the value of ©. In this case the
velocity in the boundary layer t¢/T transfers smoothly into the
velocity of the external flow, and the local velocities in the
boundary layer always remain lower than the velocity of the external
flow. At the same time the normal velocity component (Fig. 34b)
does not exceed 6-7% of the velocity component of the external flow,

/121

and the velocity profile for this component has an extremal character.

Consequently, fluid suction across the porous surface is an effectiv
means of decreasing or eliminating the secondary flows in a three-
dimensional boundary layer.

In the general case, when the coefficient a # 0, the normal and
tangential velocity components must be calculated according to the
following formulas [84]:

n
= = (tan 0 - t 0 )cos?B[w, (n) — fo (N}
T an 0 1 ) fo(n)] (LI-.LI»O)

t . |
7===&(m'+3?mn6 (tan 0 - tan 0g) [wi(n)- FE(nd1, (4.41)

where 037 is the angle between the direction of the external flow and
the x axis at the leading edge (cf. Fig. 33).
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A Boundary Layer on a Slip Wing of
Infinite Wing Aspect Ratio

The system of equations (1.16) with boundary conditions (1.17)
in the general form describes a flow in a three-dimensional boundary
layer in the presence of suction. We will now examine a stationary
flow in the case when the longitudinal, lateral and transverse velo-
city components in the boundary layer u, v and w are functions in
only two variables, x and y. Then the system of equations (1.16) is
simplified and takes the form

ou ou I dp 0%u op
“ox T dy o o0x T doy? ° oy =0, (4.42)
This system mgst be solved with the boundary conditions
u=w=0, v=—0 withy=0;
(4.u3)

u - Ux) w—->W(x) with y— oo.

In boundary conditions (4.43), U(x) and W(x) denote the com-
ponents of the velocity vector of the external flow on the coordinate
axes x and 3 respectively. These components must satisfy the Euler
equations, which in this case have the form

dau 1 dp .

U"Z?==""E"7§_'
U dw 1 ép (4.4u)

¥ Faiiirt

Taking relationship (4.44) into account, we can transform the
system of equations (4.42):

ou ou dUu ou
u ax +U ay =U dx +'Vay2,
dp
oy =0
(4.45)
ow ow aw 0w ou ov
b YV =V PVt e Tty =0

The boundary conditions remain as before (4.43).
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Fig. 34. The Tangential (a) and Normal (b) Velocity Components in

the Boundary Layer of a Plate in the Presence of Suction [f(0) = 1.0].

For the case (Fig. 35) of a bound- /123

ary layer on a slip wing of infinite
wing aspect ratio, u(x) is defined by
the streamlining of the wing in the
plane perpendicular to its axis, U(x)

is the transverse velocity component on
the outer boundary of the boundary layer

and %% = 0. Figure 36 shows the velocity
profile in a three-dimensional boundary
layer.

The system of equations (4.45) with

Fig. 35. The System boundary conditions (4.43) in this case,
of Coordinate Axes for as V.V. Struminskiy [50] first noted,

a Wing of Infinite Wing can be broken down into two parts. The
Aspect Ratio with Slip. system :
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ou du dU 0%u

u = .
w TV =V g
a PO (4.46)
—l=0' __u_ —_——
=% ety =0
corresponds to the problem discussed thoroughly in Chapters 2 and 3 /124
of this book. The remaining equation
~ 0w Ow 02w
U5+ v % = VP (4.47)

can serve as the basis for the following determination of the dis-
tribution of the transverse velocity component w in a three-dimen-
sional boundary layer.

lateral plane

profile

tangential
pPlane

lateral
component

tangential
component

surface of the body

Fig. 36: The Velocity Profile in a Three-Dimensional Boundary Layer.

We will not transform the equation to an integral impulse rela-
tionship. In the general case, when the transverse velocity com-
ponent on the outer boundary of the boundary layer W = W(x),

0] 0%

Integrating both sides of eguation (4.48) across the layer over
y from zero to the thickness of the boundary layer &y, determined
by the change in w from 0 to the value of W(x), we obtain the unknown

relationship
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a8 a8 u v [Ow
& YT U TUSU y

™

o = (L _w :

where ‘“w U W4y is the thickness of the impulse loss. In
0

this relationshipA%Eé_{erm vo/U takes into account the presence of
filuid suction from the boundary layer.

For the final derivation of the integral relationship (4.49)
the following boundary conditions were used:

w=0 withy =90

= — Up;

92 0 yithy="0
oy

We now introduce into the examination the parameters

o[ 2] g o]
o(y/67) |, “ TOTE N A

Using the system of equations in (4.46) and (4.47) we obtain

f—. dU . 6”2 )
T odx v '

fw=0'

We will now examine the dimensionless coefficient of friction

e = (5 L 5 --[gg;;gf)) ]M'= 9’ (0: P,

) (1.50)
u - _.l_i__f A .
where Tj-¢ F i1s a one-parameter profile set.
Since for a wing of infinite wing aspect ratio g;-: 0, when f=
0 the following equation must be satisfied
y y
? —..;0)=¢(7>.
(6 5,
where
© _ of-4
!
Then for the first derivative we obtain
°()
= ¢’ (0, 0) = £ (0). (4.51)
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Stipulating =z, = 5> We transform the integral relationship (4.49)
dz, av 1 1 98, 2t
—_— —_— — = S2\7 4,52
& TP ETEty Ty =T (.92

»”

where ;(m==§-+(1—-@-£§i » i.e., has the same value as in Chapter 3

and g = 0.4408 = const.

We reduce the differential equation (4.52) to the form

dz, du 1 (1 —2a) vb,
& TP aresUt T (4.53)

As a result of the solution to equation (4.53) we obtain

_ ! i a—(1—-2a) °by U (x)dx
zw_Uz(")H =205 } ' (4.5u)

0

The integration constant was taken to be zero form the condition of
the finiteness of the value of 2z,l(0) at the leading critical point.

Numerical integration of expression (4.54) is carried out by
the method of successive approximations. In the first approximation
we should take vg = 0. After computing with the required accuracy
the shape factor 2z, we can determine the remaining characteristics
of a laminar boundary layer in the presence of suction.

An Approximate Calculation of the Axisymmetric and /127
Three-Dimensional Boundary Layers.

The system of equations for an axisymmetric boundary layer on
a body of revolution have the form [4u4]

ou du dv 0
“ox Tty =V v
d(u) , (rv) (4.55)

o tay =0

The system of coordinate axes and the basic notations are shown in
Figure 37.

Since

r(x)=r,,(x)+ycosa., (u4.56)

106




where rg{(x) is the instantaneous radius of the body of revolution
throughout the boundary layer, except the area near the trailing

M
<
| M, =

////’/,,—

+ 8 =

L°

- ] _ _ _ >
r z
Fig. 37. The System of Coordinate Axes for an Axisymmetrical

Boundary Layer on a Body of Revolution.

critical point, where the boundary layer is comparatively thick, and
the radius of the curvature of the surface of the body ry tends to
zero, in the equation of continuity of system (4.55) we can assume
that r»(x) ~ rolx),

Using the system of equations (4.55) taking the observation /128

which was made into account, or applying the law of momentum change

to an element of the axisymmetric boundary layer in a porous surface
in the presence of suction, we obtain the integral impulse relation-
ship [17]:

d | d - d
ar j oulrydy — Ud—xj‘ ourydy — U _d% 8ro — Quorol = — 1or,.
0 b (4.57)

For the derivation of relationship (4.57) the origin of the
coordinates was placed at the forward critical point, the x axis
was directed along the meridian of the axisymmetric body and the y
axis along the normal to the meridian. We should also note that
relationship (4.57) and all the following operations are valid only
for small values of §/rg. Deviation from the last constraint signi-
ficantly complicates the problem and does not allow us to obtain
the solution in final form.

Introducing into the discussion the values
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]
‘u f . u &%
6“=S—(lj—(l——~5)dy; 5*=§( _._U)dy; He= o
1]

dU ) 6"2 . —1,08" . . 006.‘_ _ _ 2

we convert relationship (4.57)

) d=U
4 _du 1 oy [ B, 1 dn
ix =@ T2 "27,,'dx f- (4.58)
dx

Equation (4.58) is a modification of the integral relationship

(4.57), based on the assumption of the possibility of replacing the
actual velocity profile in different sections of the boundary layer
with a certain approximate one-parameter profile set. From an
analogous relationship, given in reference [42], equation (4.58)
differs only in the term 2¢%%, taking into account fluid suction
across a porous surface. :

Since in the axisymmetric case the function has the same form
as for a plane boundary layer, according to formula (3.50)

F=a—3f, (4.59)

where 4 = 0.4Y4 + 1,12%%%; B = 5,48,

Integrating equation (4.58) taking (4.59) into account, we
obtain

x
dv 1 1—B oy 2 au 1
X) = ———— | (AE)—2t" U ro(8)dt +C—+—55.
19 = G gas | (4O =2 @I QAO R +C G 7 o)

o .
For a body with a nonpermeable surface (¢¥% = 0), expression (4.60)
agrees with the solution obtained in reference [42]. Since the
origin of the coordinates was chosen in such a way that U = 0 when
x = 0, form the condition of the finiteness of the shape factor

A

value f(0) it follows that ¢ = 0 and f(0) = 5

Calculation of the characterisitcs of an axisymmetric boundary
layer on a porous surface in the presence of suction should be made
using the method of successive approximations, analogously to the

computation for a plane boundary layer. An axisymmetric boundary
layer presents two problems. In the first problem values of f(x)
108
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are computed according to the prescribed values of w»g, U and vy
according to formula (4.60) by the method of successive approximations.
As a first approximation of the expected change in the parameter,

we should take the corresponding values for a porous plate according

to the data of Figure 26. Repeating the process of successive
approximations, we can compute the unknown value with the necessary
precision. Computations showed that for an elongated axisymmetric

body (é > 6) it is sufficient to limit ourselves to the third approxi-

mation.

After computing with the required accuracy the values of the
shape factors f and t*%*, we can determine all the remaining charac-
teristics of an axisymmetrical boundary layer:

5% = vf (x) '21‘ &% = O6**H;

a § (4.61)
dx '
T, 2v vier
= o0 Yo = 35w *
1, U )
—2*QU

The values of H and ¢ are computed by interpolation formulas (3.u44) /130
and (3.u46).
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Fig. 38. Curves, Obtained as a Result of Calculations for an Axi-
symmetrical Laminar Boundary Layer on a Body of Revolution in the
Presence of Sucticon: -+++ First Approximation; —————— Second Approxi-
mation.
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As an example, Figure 38 shows the curves obtained as a result
of computation of the characteristics of a laminar boundary layer

for an ellipse of revolution %—= 8 with a porous surface with con-

v
stant values of vg equalUto 1.0-107% (1); 0.5-307% (2); 0.1°107% (3)
and the Reynolds number S. = Rep = 6.25°106,

This method can also be used to determine the characteristics
of an axisymmetrical boundary layer and the function wg(a) according

»r
to the prescribed values of the functions &§%%, U, §%5 ry and 352' /131
If the enumerated values are given, then we can determine the function

f and gg from equation (4.58) and then using formulas (4.61) compute

the unknown functions ¢%% and vy. To compute the characteristics of
an axisymmetrical boundary layer on a porcus body of revolution in
the presence of suction, we can also use the well known Stepanov-
Mangler [48, 86] transformation.

We will use the integral impulse relationship (1.50) to calculate
the characteristics of a three-dimensional boundary layer with
steady motion. According to V.V. Struminskiy [49], we will assume
that we can use as a velocity profile set in the cross sections of
a nonstationary layer the profiles

e

. u
where §** e 1 ——=dy i1s the thickness of the impulse loss. In this
U U P

expression the shape factor f and the value of § are functions of

the coordinate & and the time ¢. The assumption we have Jjust made
corresponds to the quasistationary process for examining phenomena
in a nonstationary boundary layer. We note that in the case of a

nonstationary boundary layer the shape factor is
6**2(1 du dU)
==\ Tz (4.62)

After the respective transformations taking the nonstationary
term into account, we can reduce the integral relationship (1.50)
to the form

dAz

of
0t

_ dx
oGt v I, N OH (.0 + M n—2—— |f =

(4.63)

-7 3—3) F .00 — 2t**J .
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Here we introduce the following notations:

O(f t) ‘-“H(f- t**)+ 2f df

U AU U U
o ax tY axzf*Uazax 1 U
M D = o BRI
Uss + % at
b.64
(ﬂ =_U62U_U U } ( )
at o Fiox
N, t)=

U ‘
V(U +ar )
F(f,t*%) = (20(F, t**)— 212 — H (f, *")) f};

. TO** fox _006**_ &*

2

Due to the assumption of quasistationarity, the values of the
functions ¢, H and F have the same form as for a stationary boundary
layer. Therefore, these functions vary with time only through the
shape factor f. In connection with this fact, in subsequent calcu-
lations for H and F we can use the interpolation formulas, obtained
in reference [12]:

H = Hy — @Ho— H) t** — H, (__c : (4.65)
F A (t**) B (t**) f.
(4.66)
Then we can write the function &(f,t%*) as
<D(f,t**)=Ho—-(2Ho—H.)t**—3Ho(—§—c). Cu.57)
and transform equation (4.63) to the form
[Ho— (2Hy — Hyt** —3H, [ & _ c\n 2L of
0 o — 4 Ho(a ez +U—o- %
NGO 1Ho— @y~ HY ™ — By b ——‘})n + M0 f —
(4.68)

-5+ 5r) A =B ¢n 2,

l dAzf 1 aU
dx
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where A4u’&‘_L”£é£ and N(x,%t) are prescribed functions. /133

Az dx
We will use this method for calculating the characteristics of

a nonstationary laminar boundary layer in the presence of suction

to the region of non-separated streamlining [33]. For the flow in

the region of separation of the boundary layer, this method is not

sufficiently precise. Here it 1s necessary to use more precise

values for the functions &, F, H and ¢t which significantly complicated

the calculations.

With a stationary boundary layer the integral relationship
(4.68) is significantly simplified and can be reduced to a Bernoulli
equation

dr ( 025 a )| g A —BEi—2,

dx U Az dx
where (4.69)
,_du. .  dU
V="' U=—7a-

We will give the integral of equation (4.69) in the form

[U (x)]°A2* (x)

f(x)=&—-( f A—2r UB @Az @) dt+ C Y,
; (n.70)

where C is an arbitrary constant.

We will locate the coordinate system in such a way that when
x = o, U = 0. Then from the condition of the finiteness of the
shape factor f at the critical point (i.e., when x = 0) it follows

A
that the constant ¢ = 0, and f(0) = 5

After computing the values of the shape factor f(x,t) according
to formulas (4.61) we can determine all the remaining characteristics:
of a three-dimensional laminar boundary layer.

We should note that a more precise method for calculating the
characteristics of a nonstationary three-dimensional boundary layer
can be developed, using the displacement thickness as the character-
istic linear dimension.
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CHAPTER 5
A BOUNDARY LAYER WITH SLOT SUCTION

The Wuest Method for Calculating the Boundary Layer of a Plate /134

The important methods for calculating a laminar boundary layer
with suction of a fluid through lateral slots placed on the surface
of the body are based on the assumption that suction does not change
the pressure distribution on the outer boundary of the boundary
layer.

The first approximate method for a laminar boundary layer on
a plate with slot suction was proposed by Wuest [128]. The method
was based on the use of the one-parameter profile set

u=UFn.k). (5.1)

where k is the shape factor; n = %—, and also on the simultaneous

use of the integral relationships for impulses and energy.

For the case of a plate these relationships have the form

da**_____vi.-_—_E; (5.2)
dx Us
ds*** v, v
— 2 =—_20D,
= U = TUs (5.3)
~ v, \2
where D==25‘t%%)¢h]is the dimensionless dissipation function; F =
<§%> is the dimensionless tangential stress on the surface of
n=20

— Us U
the body; u = %. Introducing the notations - = Z and N = £, after /135

2 k
solving equations (5.2) and (5.3) with respect to g and %E we

€

obtain
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iz EL—Dh+ 201

e , : (5.4)
% Z(f,—hf)
Uy —
j§~=.5&“‘D&'ﬁjjgwh fD (5.5)
dE Z2(faf2' -"fgf;) )

where

6#‘3

ho=%: e =2 he=".

Excluding the parameter £ and integrating equations (5.%) and
(5.5), we arrive at the expression

A

(Efy— DR+ Z (=) i

—— = —exp
- (5.6)
" (Efy— Dh) + - Z (s — )
ko
As a velocity distribution we will use the profile set
- (5.7)

— g -—“——
7] 1 —e'—F(k, ),

where

A N A 7.
Frm=rk 1—e h—smﬁﬁ) with 0<n<3VE

3

Fe)=—ke V* ,ith n<3VE

This profile set is shown graphically in Figure 39. Table 10
shows the values of fi, fy, f3, D, E and their various combinations
as a function of the parameter k.

The integral of (5.6) is computed separately for the region /136
between the slots and in the region of the slots. In the first
case, since the suction rate is identically equal to zero (vgy = 0),
the integral of (5.6) takes the form
'S Ef Df
Z ‘ Lt 78 (5.8)
- ==X — =T . .
z, = P\ TEL—DI,
0
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TABLE 10. THE VALUES OF AUXILIARY FUNCTIONS FOR THE BOUNDARY LAYER
OF A PLATE IN THE PRESENCE OF SLOT SUCTION.

k ' fa ‘ 1 fo D E
0,0 1,000 0,5000 0,83333 1,0000 1,0000
0,1 1,00285 0,4965 0,82679 0,99093 0,84935
0,2 1,00806 0,4897 0,81289 0,97534 0,78695
0,3 1,01481 0,4816 0,79527 0,95718 0,73907
0,4 1,02280 0,4726 0,77381 0,93776 0,69870
0,5 1,03187 0,4630 0,75453 0,91781 0,66313
ag,6 1,04188 0,4529 0,73251 0,89792 0,63098
0,7 1,05279 0,4425 0,70847 0.87817 0,60142
0,8 1,06450 0,4319 0, 68605 0.85904 0,57389
0,9 1,07696 0,4210 0,66179 0.84040 0,54805
1,0 1,09014 0,49986 0,63662 0.82245 0,52360
fo—is -, Efy—Dfs Df.—Ef, fhe—1 L hs
0.33333 0 0.33333 0 0
0,33029 0,0240 0,21024 0,0202 0,0035
0,32319 0,0640 0,16208 0,0362 0,095
0,31367 0,0890 0,12679 0,0484 0,0155
0,30118 0,1015 0,09747 0,0512 0,0195
0,29147 0,1110 0,07499 0,0496 0,0224
0,27407 0,1175 0,05553 0,0472 0,0248
0,26078 0,1234 0,03749 0,0451 0,0266
0,25385 0,1280 0,02270 0,0426 0,0280
0,24033 0,1331 0,00888 0,0409 0,0296
0,22609 0,1370 0,00376 0,0406 0,0312.
. ) . z 8 .
4 e — Figure 40 shows 7 T g as a function
{ 0 0
L - A2 of the parameter k. The thickness
,/%%? ' of the boundary layer at the begin-
72 ning of the slot is Sg-
R ;u
“ —a . .
EE% Numerically integrating differ-~
T - ential equation (5.5) we find k as a
R'A — — function of £ = —% and then Z as a /137

Fig. 39. The Set of Velo- function of & (Fig. 41).

city Profiles in a Laminar
Boundary Layer in the Pres-
ence of Slot Suction (Ac-
cording to Wuest).

In the region of the slot we use
the velocity profile

=1— € "—F(ky,n) + F (k. M)

u
U (5.9)

The function F(k,n) has the form of (5.7) where at the beginning of
the slot k = k). The suction rate is constant. The values of f,;

ar 3
Ezg; f3 and Ji as a function of the values of the parameters k and
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ki are shown in Figures 42 and 43.

For the dissipation and tangential stress functions D and E we

obtain

3
+ k kk
D=D=+0,13587k2+4( ___ KR _)_
= 1+VE VE+VE
— 1 n Y Ry
2n S]/i T kk® 2% kk? 1€ Tk
— 3o ) -———kl_k+-~3 1 > + (5.10)
k+
n —3Vf§: Wk
=Vke + V& B e " VR
2n 6 n 6 .
4 T kky - —
3 n? 3 i
by + ke k+ 35 /138

E=1—0,4764 (V'k, — V&)

: } T ]
— 1 . 18 < T
" 064
/// 080
14 , T— 4 7670
0,60
:7’4 - 050
! ! , 10 |
o 0. 08« 0 04 06 4,
Fig. 40. The Thickness of the Fig. 41. The Thickness of the
Boundary Layer as a Function Boundary Layer as a Function of
. 1
of the Parameter K the Parameter —% . =—.
v Z%

We will divide the calculation of the boundary layer in the
region of the slot into two stages. The Ffirst stage corresponds to
the change in the values of kX from 0 to k;. In the second stage we
will assume that the thickness of the boundary layer varies under
the condition kX = k; = const. Assuming that k, f» and E are con-
stant values, we obtain from the impulse equation the differential
equation

14Uz _ (&)’(1 _-i),

4 dge (5.11)
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The integral of equation (5.11) is

e LUV Z, zZ,—2
E §C~2(?0-/)(Z +lnz_—°°).

<0

(5.12)

However, as the author himself agrees, this method 1s not per-

fected.

The Lachmann Method and His Generalization for a
Longitudinal Pressure Gradient on the Outer
Boundary of the Layer

Using geometric constructions, G. Lachmann [82] proposed a very
approximate method for calculating the thickness of the impulse loss
for a laminar boundary layer in the presence of suction through
lateral slots. This method is widely used by Soviet investigators

[11. For calculation in the region between the slots we use the
known expression

6** 2 1 A
( L Re vy
i,
L &%* \2 U \B (5.13)
U \B (_Z“)Re(izj
I\ (g)mas | LE |
o A
€
xnL—l r=t,_,
where A = 0O0.443; B = 5,48,
5oy a —
Z Ve
a8} 02 ’af
I w0
048
071 Or
044
06
0401 ] 08 X

Fig. 42. Curves of the Values Fig. 43. Curves of the Values of
of the Function f, (the Broken the Functions f3 (th? Broken Line)
dfz 3

Line) and its Derivative

and its Derivative (the Solid

dak
(the Solid Line) in the Region

of the Slot.

dk

Line) in the Region of the Slot.
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Let (ﬁll) be the ratio of the thickness of the impulse loss /140

n
to the length of the body upon reaching the n-th slot (Flg nyy,
14

Because of suction this ratio decreases to the value ( L‘) . In

n
the process the development of the boundary layer behind the slot
the thickness of the impulse loss increases again and reaches the

§h&
value ( 7 ) . at the (n + 1)-th slot.

nt

ntﬁ slot (n+l)th slot

Fig. u44. A Diagram of the Change in the Thickness of the Impulse
Loss Along the Contour of a Body in the Presence of Slot Suction of
a Boundary Layer.

According to Lachmann, we will limit the value of the critical
Reynolds number, defined by the thickness of the impulse loss, to
the value RS** = 1250.

cr

From the functions

6**
(T) S TOy ¢
n Re(——) (5.14)

(5.15)

we obtain the relationship

U 4
(6**/L), M ,‘( A )n " —CAnpd ]

/0 (Jg)z X (5.16)
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where

(x/L)
s U\48 . [ x /1lu1
An+|1 = ‘Y (Uo-) d (—L—) ’

(x/L)y

__ 0,44 Re
n = (Rb.‘)’ *
cr
It now remains for us to find the relationship between the
suction coefficient CQ = g—f and the ratio of the thickness of
0

impulse loss (6**/L)n/(6**/L)é. According to the diagram (Fig. u45)
we assume that after suction, having discarded the lower portion of
profile I at a distance y from the surface, we obtain profile II.
The area of the discarded portion of the profile corresponds to the
quantity of sucked-off fluid. Since the width of the slot g 1is
small, in our first approximation we can ignore the change in pro-
file shape. We should emphasize that such an assumption is not
obvious.

Since the discharge of sucked-off fluid through the slot is
v ”/000

—_ ) — []&%* u Yy
Q Judy us Jud(o**)'

0

the coefficient of discharge is

6**U u- y
Co=TL . Fd(ﬁ**)' (5.17)
0

For any slot we can write relationship (5.17) in the form

- /o'.
Co UM u gy
(6**/L), — U, ) U "\ 3* )' (5.18)
)
. /6..
(6**/L),.=l_y ol _u\y(9
(6**/L), ) U U o** }° (5.19)
]
Equations (5.18) and (5.19) in parametric form determine the /142
6** ’
CQn (T)
relationship of 7gwe— tO.TFF—L. This function was computed by
( N L\)

Lachmann (Fig. 46) on the assumption that for an approximation of
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the velocity profile across the boundary layer we can use a Blasius
profile.

W. Colemann in reference [58] made an attempt to validate
theoretically the Lachmann approximate method for calculating the
characteristics of a laminar boundary layer with slot suction.

We will now examine the flow in the boundary layer near the

slot (Fig. H47). The streamline 4B passes at a certain distance yg
from the surface. Point B is the critical point on the trailing
Yy
0 ”
usy
4

M \\

" !
y N
{ / \
14 u -
U 0 04 08

Fig. 45. A Diagram of the Fig., 46. The Coefficient of
Change of the Profile with Slot Discharge as a Function of the
Suction of a Laminar Boundary Ratio of Thicknesses of Impulse
Layer (According to Lachmann): Loss in Front of and Behind the
I is the Discarded Part of the Slot (According to Lachmann).

Profile; I is the Actual Pro-
file in Front of the Slot; IIT
is the Actual Velocity Profile
Behind the Slot.

edge of the slot. Consequently, the fluid flowing between stream-
line AB and the surface is completely sucked through the slot, and
the other portion remains part of the boundary layer. We will /143

examine cross sections 1 and 2, which are placed directly on the
leading and trailing edges of the slot and we will calculate the
dissipation energy of the flow, and also the change in momentum in
the region of the slot.

We will position the x coordinate axis along the y axis

normal to the surface of the body. We will write the equation of
momentum in the form

am d
Ix "'l"QU’%G*_—"TO’ (5.20)
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/ T i i itudinal
where ﬁ4==QSua/—40dy is the momentum and u# is the longitudi
0

velocity component in the boundary layer.

We will assume that the width of the slot is small enough that
in the interval x; < x X x,, Wwhere o - x; = 8 (the width of the

/S TT777777777777777

/////////////////7\<////
Ys

Fig. 47. Diagram of Slot Suction of a Boundary Layer (According
to Colemann).

slot), the thickness of the displacement flow and the velocity on
the outer boundary are

6*=ao'+a1x; (5.21)

U = b, — b;x.
° ! (5.22)

Since in the region of the slot the flow does not come in
contact with the hard surface, Colemann assumes that 19 = 0. Then
we can write equation (5.20) in the form

M :

.FIx—: lej [aobe + (@1by — apby) x] dx =
o -

e b (5.23)

S |
Practically speaking in the majority of cases the value

Lo b
7 (& bo)s<<l‘ (5.24)
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Then we can convert equation (5.23) to the form

M, — My = @8 U, (U, ~ Uy,

where the indices 1 and 2 refer to the respective cross sections,
and we can ignore the change in momentum due to friction resistence

(5.25)

in the region of a very narrow slot (Us ~ Ui).

Thus in cross section 1

- Vs -
Ml=QJU1(U1—U1)dy=QSU1(U1—u1)dy-f'-QJul‘(Ul_ul)dy' (5.26)
0 A
and in cross section 2
-]
My = [ty (U —uy) dy. (5.27)
¥
From this, the change in momentum is
Vs
Ml—Mz =QSu1(U1—u1)dy- (5 28)
p .
Since
5?—-Aﬁ; & = A&.
1 2
and
U,=U,
then
6 b
2 ‘u
”_h‘l_idi
8 | Ul( U:) s~ ) (5.29)
of the

Then the quantity of sucked-off fluid on a unit of length

slot is

Vs
Q‘=J%ﬁ%_
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or in dimensionless form

c=-Q _U 8 [ w,fy
e UL U, L U \s J° (5.30)
1]

where Ug is the velocity of the leading flow; L is the length of the
body.

Equations (5.29) and (5.30) are parametric eguations, derived
by Lachmann from certain other, purely geometric considerations.

R
ERE

E%E, Lachmann in reference [82]
1
used a Blasius profile. To allow for the longitudinal velocity

gradient on the outer boundary of the boundary layer when computing

Jo s
ww

To compute (Cp as a function of

Co as a function of by formulas (5.29) and (5.30), Colemann

Gi'
proposed using a Hartree profile. However, these computations can
be made more simple using analytic velocity profiles. A comparison

of precise and approximate results showed that the most reasonable
function was the profile set proposed by A.M. Basin [2]:

u 2 1 -y
-U-=<'{l +“E§f—[f]z‘;|l Sln—H**(F)]SIH~H**((Vi*)}, (5.31)
where H#% = gww is the ratio of the conventional thicknesses of the

boundary layer.

Substituting formula (5.31) into equation (5.29), after simple
transformations we obtain

- v/~
{ + — “2 fH**zll-—Sin 5 H**( **) , X
a
AV 2 (5.32)
% si *k 1 .
Slﬂ[ H <**)]d(6**)+\s‘ {I*Ffﬂ-—*t&x
¢
I . n
x[l—sm?li" (6'{!*)]}5"1’,‘7[1" (6‘!‘/*)]‘1(6'%)'
where H*%® varies only with the shape factor f. /146

After computing the integrals and reducing the terms equation
(5.32) takes the form
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(=]

=1 —ag, +a, a‘z*)—a,sin [nH" (-i..)] 4

v\l
2[7'"(5‘7)] (5.33)

-+ a; cos

4 a,sin 2nH**( )

— agcos® ll ( )],
2 6#*

where

1 16 1

2
%= g + ,—n—f H*ed 4"(2—“_5 H** i

8 1 16 1
a8=f3_n' H**3 +f2ﬁ._—H*'5

As a result of analogous computations formula (5.30) can be

reduced to the form

. c, , ,
X =0y~ ag (w) + a, sin [:rrH** (E’W)}—'
(5.34)

_amcos[ . Hn(a**) ]

where
2 4 1
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Fig. 48. The Dimensionless Discharge of Sucked-O0ff Fluid as a
Function of the Ratio of the Thicknesses of Impulse Loss in Front
of and Behind the Slot for the Velocity Profiles of A.M. Basin: 1.

£ = 0.04533 2. f = 0.01735; 3. f = 03 4. f = -0.037763 6. f = -0,
07713.
CQ
Equations (5.33) and (5.34) in parametric form express s U
_ L T,
as a function of 62"/62;. The numerical values of the coefficients
are shown in Table 11. As a result of the final calculations, we
C ate ofa wls ofs
construced curves (Fig. 48) of 3#3— as a function of 68f /8,, for
cr U
L U,
different values of the shape factor f. The data for f = 0 agree
satisfactorily with Lachmann's results.
Periodic Suction of a Boundary Layer
In reference [130] periodic suction of a boundary layer on a
plate was investigated theoretically. We will now examine the case,

interesting for engineering, of fluid suction through lateral slots

placed at identical distances from one another.
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THE NUMERICAL VALUES OF THE COEFFICIENTS H##% AND a; AS

TABLE 11.
A FUNCTION OF f.

H H*™ G e, ag a,
0,0453 0,7958 31,0182 2,8756 9,9704 0,2077
0.03164 0,1266 10,7950 1,239 3,1160 0.0251
0,01735 0,1326 7,2959 0,8348 2,0159 0,0060

0 0,1366 4,561 0,5000 1,162 0

—01893 0,1385 2,6968 0,2350 0,5516 0,0057
—03776 0,1383 1,2893 0,04000 0,1376 0,0230
—0,5529 0,1359 0,3523 | —0,0880 ~0,0983 0,0539
—0,6826 0.1315 —0,0648 | —0,1400 —0,1453 0,0968
—0,07413 0,1250 —0,0081 | —0,1264 —0,0037 0,1589
a, Q ey ay s s
39,8760 8,8631 13,2912 0,5001 1,6616 13,2919
1216724 1,8772 7.0408 | 006367 0.5024 7,0408
8,0635 0,7676 5,7609 0, 1000 90,2400 5,7609
4,561 0 4,55] 0 0 4,561
2,2065 | -—0,4903 3,6773 0,1000 —0,2298 3,6773
0,5503 | —0,7368 2,7618 | —0,2000 —0,4603 2,7618

—0,3930 | —0,7452 1,8426 | —90,3033 ~0,7105 1,8426

—0,5809 —0,5167 0,9687 | —0,3999 —0,9681 0,9687

—0,0170 | —3,0047 | —0,0003 | —0.5001 —1,2733 —0,0003

for an

Due to the periodicity of slot placement,

there is a closed solution to the equation of motion:

u

_E=

where

To allow for the influence of friction on the wall we will use

the Navier-Stokes equations. After introducing the flow function,

"'lj—..—

a, = Ae

“T

v | X , -
1 4 ﬁ-;Z[an(y)cos g«;— b, (y)sin n——inf];
n==1

Z[au(y)sin @ + b,,(y)cos#j .

=y

i

-y
ba = B,e !

Wwe can write these equations in the following form:

We can now expand the flow function into a Fourier series:
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v=Uy4 o |x4 z{an(y)cosn—’;‘x— + b,,(y)sinf’lix} .
= (5.37)

Substituting expression (5.37) into equation (5.36), after trans- /150
formations we obtain for each coefficient an ordinary differential
equation containing coefficients in the form of products. However,

no one has yet succeeded in obtaining a direct solution to this

system of nonlinear equations.

An approximate method was proposed to solve this problem. We
will take the suction rate to be constant over the entire plate.
Then, as we know, an asymptotic velocity profile is established at
a certain distance from the leading edge. We will now examine a
velocity field as a result of the application on a uniform flow with
an asymptotic profile, of a periodically changing supplementary
velocity field

U=u,+u; v="0U,+70; w=uw,t+w,
(5.38)

where

U1, V1, W1 are periodic functions.

As an initial equation we will take the Navier-Stokes equation
in the form

11 i [0)
U T Ugy = Ve (5.39)
where
_w_u
_Bx-@f

Taking expression (5.38) into account, we can transform equa-
tion (5.39) to the form

i/
(“o‘*"fl)g&;)!-bv(%%—o-%*%%)-}‘-ve,-a—(.;oy—‘=vA(o,. (5.40)

If we eliminate the underlined terms of equation (5.40), it
becomes linear. However, this elimination is valid only with very
low suction rates. The approximate solution obtained can be used
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as the zero-th approximation with the solution of the complete equa-
tion by the iteration method. The differential equation (5.40)
corresponds to the "disturbance equation" examined by Pretsch [96]
for an asymptotic profile with the difference that in equation
(5.40) the boundary conditions for the component v have a somewhat
different form.

In reference [130] a calculation was made for a boundary layer /151
which is very thin in comparison to the distance between slots. The
obtained results were different from the results for an ideal Ffluid.

Fig. 49. Streamlines With Slot Suction.

The most significant role in the obtained solution is played
by the coefficients a; and b;. The diagram of the streamlines
(Fig. 49) allows us to detect the presence of two eddies. Con-
sequently, midway between the slots the fluid flows from the bound-
ary layer to the external flow.

The presence of eddies can be determined on the basis of equa-
tions. We will 1limit ourselves to the term of equation (5.40)

(5.41)

The obtained diagram of the distribution of eddy intensity
with a negative second derivative for the basic profile is shown
schematically on Figure 50. It is clear from the figure that the
situation is important when the periodic flow has a velocity pro-
file derivative which is non-zero along the normal to the wall. If
the thickness of the boundary layer is greater than the distance
between the slots, then the disruptions of uniform flow are already
damped in the region in front of the wall, in which the velocity
profile can be approximated by a straight line. In this case, eddy
formation is totally excluded.

Lateral-periodic suction of a boundary layer is of theoretical
interest. The potential of the non-viscous flow in the plane Oxz /152
(Fig. 51) in this case can be expressed as
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2v_{ G

- o0 -
¢ =—— lmsingg, (5.42)
where
Eazékiy.
Vi, 0, B The velocity components are
. 2
SInT
U=U@ — ¢
cos—y-—cos¥
VA7 77 x sin ¥ (5.43)
o {
® L E
COS—!Z—CQSE
L {
It is clear from Figure 51 that
= ——————— @ =2 midway between the slots is the critical

point, in the immediate vicinity of
Fig. 50. A Schematic which from equation (5.43)
Diagram of the Flow.
4
=~ =Z—z ¥
v vm2l(z z_

v (5.u44)

o=o_o
0021 y‘

These expressions correspond to the flow near the critical point.
The action of viscosity on the critical point can be determined by
a rigorous solution to the Navier-Stokes equations.

For the viscosity not to exert an influence on the flow near
the critical point, the following condition must be satisfied

2v I
v

> 100. (5.45)

The Navier-Stokes equations for lateral-periodic uniform suc-
tion on a flat plate are significantly simplified, while we obtain
for the component u a linear differential equation, in which » and /153

w are known functions in u. After v and w are found near the critical
point from expressions (5.44), the profile of ucgyp is determined

from the above mentioned differential equation. This the longitu-
dinal velocity profiles near the critical line become known, the
profile uoy corresponds to a greater thickness of the boundary layer
than the asymptotic profile on the discharge lines (Fig. 52).
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Fig. 51. Curves of the Potential Flow with Slot Suction.
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Fig. 52. Streamlines ¢ in a Boundary Layer in the Presence of
) 210 .
Periodic Suction (Re = vO = 100). The Region of the Boundary

Layer is Shaded.

It is interesting to investigate the stability of such a lat- /154
eral-periodic flow in a laminar boundary layer, when in the cross
section perpendicular to the direction of flow, a stable asymptotic
velocity profile is combined with large values of the coefficient
of friction and the profile of uep is combined with insignificant
stability and small values of the coefficient of friction.

A Simple Approximate Method for Calculating Slot
Suction of a Boundary Layer

In the references of Lachmann and Colemann, momentum losses
during the flow of the fluid in the region of the slot are not taken
into account. It is possible to allow for them by using an equation

of three moments [13].
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We will examine now uniform suction of a boundary layer on a
plate. In this case the equation of the zero-th moment is

dd Vo To

o YU S

(5.46)
Taking expression (3.57) into account we can convert equation (5.46)
to the form
B“d.'
- - 8 =dx

WL g Y 5.47
T+ —d) 78 ( )

and satisfy the boundary conditions:

with x=x, 8" =8},

withx=1x, & =&

Integrating equation (5.47) after simple algebraic transform-
ations we obtain

l+(l-d) ~ U b;c

& 8 Loy : W U
- n =X, ~ X
3 — 1y 2 (1—d) —u 2 1 (5.48)
(I—d)— 7 (1 —dp{ -2 U =9 —Y% g
g (¢—ap U) 1+ g 7k
Later we will compute the basic function connecting the char- /155
acteristics of a laminar boundary layer with the discharge & = vgs
with suction of a fluid through a slot of width s = x2 - x;, located

at a distance x1 from the leading edge of the plate. After simple
transformations of equation (5.48) we obtain the unknown function

(—d . 6
Q _ _l__(i;'_l)__?;o__m ,l+ G 08 (5.49)
Usy —(T—=a\'&" (1 —adyey” | L 0=a),. ' )
+ L,
93
where
57

M= ——.

It follows from an analysis of formula (5.49) that the dimen-
sionless value of the required discharge varies not only with the
ratio of the thicknesses of impulse loss in front of the slot and
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as we assumed earlier, but also with the suction

parameter t?* which is the Reynolds number, defined by the thick-

ness of the impulse loss in front of the slot and the local suction
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rate. The dimensionless discharge as
a function of the two parameters is
shown in Figure 53,

Approximate calculations of the
characteristics of a laminar boundary
layer in the presence of fluid suction
across a lateral slot, located on the /1586
surface of the plate, should be made
using the functions shown in Figure
53 taking the values of the suction
paramer into account. The recommended
functions can be applied approximately
in calculating the characteristics of
a laminar boundary layer with slot
suction of a fluid from the boundary
layer of wing profiles and bodies of
revolution and ratios of their length
to maximum width greater than seven

L291].

Reference [87] is devoted to
an experimental investigation of slot
suction of a laminar boundary layer.
Practical recommendations according
to the determination of suction of a
laminar boundary layer and hydrody=-
namic resistence are also made in
reference [521].
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CHAPTER 6
OPTIMAL SUCTION OF A LAMINAR BOUNDARY LAYER /157

An Approximate Determination of the Lowest Values of
the Critical Reynolds Numbers

In the preceding chapters we have examined the problem of the
development of a laminar boundary layer with prescribed distribution
of the suction rate along the permeable surface of a body. A very
important problem in practice also is the decrease in friction re-
sistance due to retention of the laminar condition of flow in the
boundary layer by means of suction. It is obvious that the friction
resistance, taking into account the power necessary for suction of
the fluid from the boundary layer, will be at a minimum, if we
choose the local suction rate such that it will be at a minimum
and the flow in the laminar boundary layer will continue to be
stable. Henceforth we will consider the optimal suction of fluid
from the boundary layer across a porous surface to be that distri-
bution of the normal velocity component along the surface, with
which in each cross section of the boundary layer the local Reynolds
number (R**) is equal to its lowest critical value.

To determine the lowest critical Reynolds number we must in-
vestigate the hydrodynamic stability of the fluid flow in the
boundary layer. These investigations are usually made by the small
perturbation method [40, 56]. However, this method for determining
the lowest value of the critical Reynolds number is very unwieldy.
Therefore, approximate methods for determining the lowest value of
the critical Reynolds number have been widely used.

We assume that the velocity profiles in a laminar boundary layer
can be described with the required precision by a one-parameter set
of curves. In this case the velocity profile in any cross section
of the boundary layer can be completely determined by the thickness
of the layer and the shape factor. As a shape factor we take the /158
ratio of the conventional thicknesses of the boundary layer

5
H=—1,

& (6.1)

where 8% is the displacement thickness and 8%%* 1s the thickness of

the impulse loss.
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In this case the dimensionless thickness of the boundary layer
is characterized fully by the local Reynolds number

. U8
R" = . (6.2)

v

An analysis of the results of calculations of the loss of hydro-
dyvnamic stability of the flow in the boundary layer showed that the
influence of various factors (distri-
LgR, . bution of the suction rate and velo-
cities in the outer boundary of the
layer) on the critical Reynolds number
are related to the shape factor H.
4 Approximate functions, obtained as
a result of calculations for various
2 classes of profiles, are shown in
3 Figure 54. The black dots refer to
3 < Hartree profiles and are the results
o- £29] ‘\ of the calculations for various classes
] of profiles, are shown in Figure 54.
The black dots refer to Hartree pro-
files and are the results of the cal-
culations of Pretsch [91]1, [921, [93].
For example, for a velocity profile
near the critical point of a plane

o— [101]
2 - [102]

V7

? 25 " boundary layer H = 2.22. The corres-
Fig. 54, The Lowest ponding value for an axisymmetric
Value of the Criticaly layer is H = 2.33, and for a plate the
Reynolds Number RZ“ as a value is H = 2,59. TFTor a boundary

layer on the nonpermeable surface,
these points correspond with practic-
ally admissible accuracy to the ap-
proximate function

Function of the Parameter
H for a Plate in the Pyg—

sence of Suction: 1. Rz” =
exp (31.3-10H); 2. Rj* =

exp (26.2-8H); 3. R;}"‘ = exp R =exp(A — BH), (6.3)
(29.1-9H).
where 4 = 26.3 and B = 8 (constant
values).
The value of the critical Reynolds number for an asymptotic /159
boundary layer (H = 2) also satisfies the last function.

The velocity sets, approximated by sixth degree polynomials
(the white dots in Figure 54) correspond to higher values of the
critical Reynolds numbers, determined by the same function with
A = 29,1 and B = 9,

In reference [123] the hydrodynamic stability of the Schlich-
ting profiles was computed in the presence of suction of a boundary
layer. The results obtained are shown in Figure 55 as solid lines.
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In the interval of values from 2.2 T H T 2.6, which has basic prac-
tical value, function (6.3) with A4 = 29.1 and B = 9, reflects with
sufficient approximation the data of the lowest values of the cri-
tical Reynolds numbers for the Schlichting profiles.

Consequently, with the first pair of constants 4 = 26.3 and
B = 8, formula (6.3) satisfactorily approximates the results of
calculations for the stability of the boundary layer of wedges,
and also of an asymptotic boundary layer on a porous plate (for H =
2 - 2.8). The data of calculations according to formula (6.3) with
the second pair (4 = 29.1 and B = 9) of constants show a better
correspondence to the lowest critical Reynolds numbers for the
Schlichting profiles with suction of a boundary layer and for the
six-term Pohlhausen polynomial without suction of the layer (for
H= 2.2 - 2.7).

The results of subsequent calculations depend to a significant
degree on the assigned values of the constants 4 and B. In con-
nection with this fact, new analyses were made of the data of cal-
culation for the hydrodynamic stability of a fluid flow in a laminar
boundary layer on a porous plate with uniform suction vy = 1/Vx
[102]. This analysis allowed us to establish that in the interval
H = 2.15 - 2.80 the above-mentioned data can be approximated with a
high degree of accuracy (up to 2%) by formula (6.3) for 4 = 31.3
and B = 10. Calculations showed that with optimal suction of a
laminar boundary layer on a porous plate, this interval of values
of H goughly corresponds to a range of Reynolds numbers from 10°
to 10°.

Figure 54 also shows the data (curves 2 and 3), computed by
formula (6.3) for the two pairs of constants (4 = 26.2; B = 8 and
A = 29.1; B = 9). It follows from the data shown in these graphs,
that with 4 = 31.3 and B = 10, formula (6.3) shows a better cor-
relation than the above-mentioned data with the results of calcu-
lations for the lowest critical Reynolds number for a porous plate
with suction of the boundary layer.

Figure 55 shows the lowest critical Reynolds number, for dif- /160

ferent pressure gradients and suction parameters, as a function of
the shape factor of the boundary layer for the Schlichting, Hartree
and six~term polynomial profiles. These data can be used for an
approximate evaluation of the lowest critical Reynolds number.

Simultaneous Use of the Impulse and Energy Relationships

Near the leading critical point the boundary layer remains
laminar without suction. At the point of stability loss a danger
of turbulence arises. Beginning at this point for a nonpermeable
surface it follows to have optimal suction of the boundary layer,
satisfying relationship (6.3). To calculate the optimal suction
of a laminar boundary layer in addition to relationship (6.3) K.
Wieghardt [123] proposed the use of the integral impulse and energy
relationships
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sy ~a—x~(U3fO(5 - U< 5o ¢
where 0
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Iy

s .
D=fL Oowl) Py
J e lowsn] \s)"
Relationship (6.4) is wvalid for a
laminar boundary layer with axial symmetry.
In order to obtain the relationships fonr

a plane boundary layer, we should take in
system (6.4) the value »ry =~ 1.

3.5

Fig. 55. The Lowest Critical Reynolds
\) Number for Different Pressure Gradients
and Suction Parameters as a Function of
the Shape FTactor of the Boundary Layer:
(1) The Hartree Profiles; (2) The Six-
\\\ Term Polynomial [101]; (3) The Profile

)

PO o
SN

at the Critical Points; (4) An Asymptotic
Profile with Suction; (I) RE%® = exp (29.3-
8H); (II) RE™ = exp(29.1- oS : (IIT) The

2a 24 " Schlichting Profiles [103] in the Presence
of Suction.

For one-parameter profile sets in the boundary layer there are
single-valued relationships between the parameters e, D and H. Using
these functions we obtain from system (6.4) differential equations
with respect to the values of H and R%%,

dH | dUU) U Re
A 7 S 7
Re 0,

G+ 0 () 555 R** '—D_;"

dR** H+1 dwy | 1 de/Dy o,
are -{ L R g
ds- WUy ds o/ ds (6.5)
U Re
+ U R** + R o
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Here L is the length of the wing profile or body of revolution;

- x . . .

s = 7 is the dimensionless length of the arc measured from the lead-
. . - 3 - . U L

ing critical point; Ug is the velocity of the leading flow; Re = Lk

is the'Reynolds number; f, g and 7 are functions of the parameter H /162
for which the following formulas are valid:

f(H)'=—.%—.-"5H—;—I—);

&
2D - 8—3;.—

g(H)=-—~—'—.N—'-;' (6.6)
6“..

w1

M) =——F— |

where

6.‘.
d——
N I
= dH °
The values of the functions f, g, % and their derivatives are
shown in Table 12.

TABLE 12. VALUES OF THE AUXILIARY FUNCTIONS.!

. 1 dj 1 dg I dn

H f g h T | T | T e

2,00t 8,0/ 1,60/3,19 7.0 1,15 0,7 0,500
2.05| 8.7 | 1.48 ] 3.27 7.4 1010 0.9 0,467
2,100 9.5 | 1,37 | 3,37 8.1 1.05 1.1 0,437
2.15] 10.3 | 1,27 | 3.49 8.9 1,05 1.3 0,409
2:90| 11,3 1,17 | 3,63 | 10.0 1,05 1,5 0°383
2,25y 12,4 | 1,06 | 3,79 11,1 1,10 1,65 0,359
2,301 13.6 [ 0,95 | 3,96 | 12%9 1,10 1,75 {0,337
2,351 14,9 [ 0,84 | 4.14 | 13.4 1,10 1,85 10,316
2,401 16.3 | 0,73 | 4.33 | 4.7 1,15 2,0 0,297
2.45( 17.8 1 0.6) | 4.4 | 16.2 1.95 2,% | 0,279
2,501 19,5 | 0,48 | 4,78 | 18,3 1,35 2,6 0.962
2,55 21,5 | 0,34 | 5,06 | 20,6 1.40 3,0 0,246
2.60) 23,7 10,20 | 5.38 | 23,0 1,45 8.35 | 0,231
2,651 26,1 10,06 | 5.73 | 925.5 1.50 3,65 0,217
27701 28,7 | 0,10 | 6,11 | 28.1 1,60 3.95 | 0,204
2,751 31,7 | 0,27 | 6252 | 31.0 1.75 4,25 |0,192
2.80] 34,9 | 0,45 | 6,96 | 34.6 2.00 4,6 0,18l
2,85| 38,7 | 0,67 | 7.44 | 40.0 240 4,9 0,170

1 1n compiling this table, we used as a basis the Schlichting pro-
files with suction.

Using expression (6.3) and the system of equations (6.4) we /163
obtain

df _ _ h#) av | BE) dn

Ny v s Y s T RE ()
R** = exp (A — BH).
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Linearizing the first equation of system (6.7) for a small
increment AF, we obtain

ReU -
—-f.v‘i*fz“’—faWAs (6.8)
AH = Re JAs
f,Y + 2(0 + = (fs + Qst) R** —_U—o—
where
—_1 i R 1 df —~2[(ro)2-’(’0)‘l.
Uogthdly o= 8570550,
~l_ dU - 2[U —Ull p df| . - . de . . - df3
v=gog =g =gt h=qgt h=an

After computing the values of H(s) and, consequently, also R%%,
we can determine from the integral impulse relationship the local

suction rate

U “ds “ 1, ds

.dR** 4’;(H--Pl dU$l d’O)R** _U_&_ (6.9)

The auxiliary functions fi1, f2 and f3 in this case vary with
H and are approximated by the approximate formulas

ity =— L= 2o 00121 40,2745 ( — 2.2
1

i 1 — H,,
2(]-]) = -T—:.:: 0,1210 ¢ 0,0033 (H — 2,2);

2D (6.10)
f,(H) = ~0,0385 (H — 2),

where
_ dHy,
N, BU Hu)¢ dH b
= Soree

a=—6—.r.

Thus all formulas have been obtained to calculate the optimal /164

suction of a boundary layer.
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Figure 56 shows the curves obtained as a result of calculations
of the optimal suction of a boundary layer for an ellipsoid of

rotation with a semi-axis ratio 1:8 with Re = 8:10%, From the
initial point of suction for approximately 75% of the ellipse the
Yo
suction rate remains practically constant (ﬁE = 1.4°10""%),
good
; . Yy, ) _
____—_.__/
o= — e x—
0 . . lwogpm - A,,{’(l_‘) -
o ~— TV —
\
_lo‘l N S __ﬁcﬂ \\
Ty
\
20 } 1
4 025 a5 075 X

Fig. 56. Optimal Distribution of the Suction Rate for an Ellipsoid
of Rotation (According to the Data of Wieghardt).

The Wieghard+t method for calculating the optimal suction of a
laminar boundary layer was in practice very unwieldy and time-con-
suming. Its deficiencies were basically related to the use of the
method of finite differences to obtain numerical results. To eli-
minate these shortcomings, Wortmann [125] proposed instead of
numerical integration a more simple method of solution.

Using equation (6.3) we can transform the second equation of /165

system (6.5) to the form

dR** du 1 dry 1\ ... U Re
& (M E T )R A R (6.11)
where
F—F // —f
M=gt—H 1 A= 42 A""g_n_i“'

and the functions fi, f2, f3 vary, as do f, g, # only with H and
have the previous values.

Taking H = const., we integrate equation (6.11) by the same
method we used to solve the equation for a boundary layer without
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suction, and we obtain

U 2A| ro 24, : U 1=—24, "0 —24, . _
Rc:? = R”2 + 2 Re A (____) (._.) S‘ (—.) —_— ds.
H 3\ "0, L Y U, L (6.12)

Calculations begin from a value of the Reynolds number R%¥* at the

point of loss of layer stability with respect to small perturbations,
For the given values of U(s) and ry(s) and various shape factors,

we can compute R*%. If we plot the set of curves of R*#*(s,H,) and
the critical Reynolds numbers corresponding to each value of X,

then we can determine graphically the unknown function Rgi (s).

When the function Rii (2) is known, we can compute the local suction

rate from the expression

o _f=hav W R €=k U _
U, =~ "h ds U Re h URSy (6.13)

A further simplification of the Wieghardt-Wortmann method is
presented in reference [132].

The Use of Equations of "Three Moments"

The problem of optimal suction of fluid from the boundary layer
of a porous plate was first solved in reference [91] by numerical
integration of the Prandtl equation. References [16, 123, 125] are
also devoted to an approximate solution to the analogous problem of
a boundary layer with longitudinal pressure drop on the outer bound-
ary. In these calculations, the impulse and energy equations were /166
used. We will now find a system of equations of the zero-th and
second moments in order to calculate the optimal suction of fluid
from a boundary layer [18].

We can write the equation of the zero-th moment in the form

di U

v’ -
Ex_.:_LTf.g..U-—[a-*—(B——Dt — bfl, (6.14)

where g = O.443; b = 5,48 and B = 1.12 (constant values).

Since
6'.2U’ VU' .I2 12 U.-
fosm = (R - ) (6.15)
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differentiating equation (6.15), we find

2vU v dR™?

df VW' e 2
w= R R & 5 (6.16)
Substituting formulas (6.15) - (6.16) into equation (6.14) and

making algebraic transformations, we obtain

v 4R vU’
U dx T

rb—2)R?—(B—2 FR"—a=0

.8 vo .. (6.17)
(r-3)

where vy(x) is the local suction rate from the boundary layer.

We can write the equation of the second moment in the form

af U U a =
= = — e (H — H " — 6.18
where H is the shape factor of the boundary layer, and ¢ = 9.5h4;
Hyp = 2.59 and Hy, = 4 (constant values).
After substituting formulas (6.15) - (6.16) into equation (6.18)

and making the corresponding algebraic transformations we obtain

v dRu? U’

Uy 1vee H
Tt o LR —g =m0, (6.19)

(a6 —2)R™2 ¢ a2~

Excluding the value vg/U from equations (6.17) and (6.19), we

obtain the differential equation for computing the local Reynolds /167
number
a aH.;
—H
dRu? ’ w2 HO (3_2 )
& T RR v (142 A =0 (6.20)
U B—2 H,
where
a(b 2) H4
ac — 2
[ee—2+ 5= 4
o= g 2 ,H‘ :
B—2 H,
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Integrating equation (6.20), satisfying the boundary condition
R%% = R%* when x = xg, where zg 1s the coordinate of the point of
stability loss without fluid suction, we find

—k, A
(B—2) :10 FaH, 4 (x3] Slaﬂ‘— H(B— UM (x)dx+
X

Rlﬂz =
(6.21)

[ 15 U(x) k.
+R‘,’[——~U(,;’) ]

The calculations of the optimal suction of fluid from a boundary
layer begin from the value of the local Reynolds number R%% at the
point of loss of layer stability, before which the flow without
fluid suction in the layer is stable with respect to small pertur-
bations. We can compute R%%* according to formula (6.21) for the
known velocity distriubtion on the outer boundary of the layer of
the body and the given values of the shape factor H. After obtain-
ing the set of curves for R*%(x,H) and the local critical Reynolds
numbers corresponding to each value of the shape factor H, we can
graphically determine the function R** (x). In this case the values
of Rg;(H) should be computed by formila (6.3).

We obtain from the equation of the zero-th moment (6.17) a
formula for computing the optimal distribution of the rate of fluid

suction

By, 1 1 dR? -2, a 1
U U B=2 R "dx U—2)" T B—=2 'R" ° (6.22)

We can determine the first term in formula (6.22) from differ- /168
ential equation (6.20). After the corresponding transformations we

obtain

v 1 1~ dR™ W ko
TB=7 R & T B=z R+
a laH,+HB—2) 1 (6.23)

T E—Y H.B—9 +aH) T

Substituting this expression into equation (6.22) and making
the necessary calculations we obtain in final form the formula for
determining the optimal distribution of the rate of suction of fluid

from the boundary layer:

D _ W b—2—k) p.,  a(H—4H) 1
T T T -2 N Y WB-dtaH) F (6.24)
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Having determined the optimal distribution of the suction rate
from formula (6.24), we can compute by a known methed all the
characterisitics of a boundary layer and the friction resistance.

This method for calculating the distribution of the rate of
optimal suction of fluid from a boundary layer was developed for
pPlane flows. With the help of the known Stepanov-Mangler trans-
formation this method can also be applied to axisymmetric flows.

The Influence of Initial Turbulence and Surface
Roughness on the Optimal Suction

Above we considered the optimal suction of fluid from the
boundary layer to be that distribution of the normal velocity com-
ponent along the surface of the body when the local Reynolds number
in each cross section of the boundary layer is equal to its lowest
critical value, computed by the method of small perturbations
according to the Tollmien-Schlichting theory of hydrodynamic sta-
bility [99, 114]1. Analysis of the experimental data showed that
laminarization of the boundary layer by suction of fluid across
the porous surface of a body is possible with the condition that
the local Reynolds number is equal to its critical value at the
point of transfer varying with the initial turbulence of the flow
and the roughness of the surface of the body. This circumstance
has great pracitcal value in calculations of a laminar boundary /169
layer on bodies having a certain roughness of their surface and
moving in a medium with low initial turbulence. Therefore, it is
very important to determine the possible influence of initial
turbulence and surface roughness on the optimal distribution of the
rate of suction of a small quantity of fluid across a specially
prepared porous surface of a body.

We turn now to the determination of the critical Reynolds num-
ber at the transition point. According to the known Taylor hypothesis
[109] we will assume from now on that turbulence in a laminar layer
arises by action of perturbations of finite amplitude caused by
eddies originating at the surface of the body and formed due to
premature local separations of the boundary layer. In this case?
the finite perturbations in the boundary layer are caused by tur-
bulence of the leading flow or by eddies formed with streamlining
of the elements of roughness located on the surface of the body [15].

As we know, premature local separation of the laminar layer
can be determined approximately by the relationship

.

J J_{ée_[g_7|},;, (6.25)
x 8

v gU ldx

2 The influence of initial turbulence and surface roughness are
discussed in references [9, 10, 14, 247,
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where ép—-is the longitud%gal pressure gradient on the outer boundary

dx

of the boundary layer; %% is the root squared from the mean-square

value of pulsation of the longitudinal pressure gradient on the
outer boundary of the layer; 6;" is the thickness of the impulse
loss of the boundary layer at the point of transfer; U is the velo-
city on the outer boundary of the layer; fs is the value of the
shape factor at the point of separation of the boundary layer.

The value of the shape factor fsS varies with the intensity of
suction of fluid across the surface of a body, characterized by a
suction parameter

“_ ub

t = gl

where vg(a) 1s the local rate of suction of the fluid across the /170
surface. Figure 57 shows the shape factor fg as a function of the
suction parameter t%%,

Since pressure pulsations, caused by turbulent motion of the
fluid, follow the law of random events, we can assume that the
mean-square value of pressure pulsa-
tions on the outer boundary of the

I boundary layer follow the summation
014 rule:
/ 5o ox Ox |, x |, (6.26)
~q10 / - .
// o
5 ] where py is the component caused by
! 1 57
4 ’ { turbulence in the external flow; oL
- 0,06 dx| 2
0 04 08 t” is the component caused by eddies
formed with streamlining of an element
Fig. 57. The Shape of of roughness located on the surface of
Factor of the Point of the body.
Boundary Layer Separa-
tion as a function of the We will assume that the turbulence
Suction Parameter ¢#%%: of the leading flow 1s isotropic. If
(1) According to the Data the transition point is located at a
of [103]1; (2) According to certain distance from the leading cri-
the Data of [1151; (3) tical point, then the surface of the
According to the Data of body does not distort the isotropy
[(1177. of the turbulence on the outer boundary

3 The question of the transition of a laminar boundary layer to a

turbulent one with suction is examined in reference [12].
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of the boundary layer. Then for the connection between the pulsa-
*~~

tions of the longitudinal pressure gradient %% ) and the velocities

on the outer boundary of the boundary layer we can use the relation-
ships of the statistical theory of turbulence [1091]:

~ ——

ox |,

A"Nl‘l/u’LL' (6.28)

where u{ is the mean-square value of velocity pulsation on the outer
boundary of the boundary layer; A; 1s the dimension of the '"smallest

[5;) o, (6.27)

eddy"; L i1s the turbulence scale in the external flow. /171

For a pulsed flow, caused by eddies separated from an element
of roughnessu, located on the surface of the body, we have

p| oy (6.29)
ox |, A, "'
%nuU(é%); (6.30)
Ay ~d,
(6.31)

where ué is the mean-square value of the velocity pulsation on the
outer boundary of the layer; Ay is the dimension of the "smallest
eddy"; d is the height of the element of roughness; 85 is the

thickness of the impulse loss at the location of the roughness.

Separating with the help of relationships (6.26) - (6.28) the
us 1/5
critical Reynolds number R%" = 5 and the Taylor parameter E(EE)

we can transform the transition condition (6.25) to the form

I
“ e A z
R =R, +. : - (fS+f) . s

[T e

In reference [11] it was shown that the universality of the Dryden
function [61], which evaluates the influence of surface roughness
on the transition of a laminar boundary layer to a turbulent one, is
not corroborated by experiments. The question of the internal re-
sistance of an element of roughness is discussed in reference [21].
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'
u

0 . . .
where e = 5? is the degree of turbulence in the leading flowy Uy

is the velocity of the leading flow; ué is the mean-square value of
the velocity pulsation in the leading flow and L is the length of

the body.

The value R;k is introduced into equation (6.32) to satisfy

the condition of the damping of perturbations in the boundary layer
from the turbulence of the external flow and surface roughness, when
the critical Reynolds number is equal to jts lowest value. It is /172

we

necessary to do this because when R%" - RH », the pulsed pressure

gradient on the outer boundary of the boundary layer due to the
rapid damping of the pulsations does not significantly affect the
transition. The validity of this transformation is confirmed by
an experiment.

o ﬁ
0. /”_\\\\\ ' —
/ N -
‘\\\\\
0.2 ]
/ g [
L/
0 04 28 12 7 V {,ﬁ

Fig. 58. The Curve of the Values of the Function Q(%—).
0

The values of the lowest critical Reynolds numbers for differ-
ent pressure gradients and laws of fluid suction distribution can
be computed by the approximate formula (6.3). For a more precise
calculation of the lowest values of the critical Reynolds numbers,
we must examine the stability of the fluid flow in the boundary
layer.

The values u; and Ly, which were introduced into formula (6.32),
are the mean-square value of the velocity pulsation and the turbu-
lence scale on the outer boundar¥ of the layer respectively. Since
the turbulence characteristics ugy and Z are usually known in our
calculations, it is necessary to express u1 and Lg in terms of the
above-mentioned characteristics. To derive this function we will
use the known relationships [6]
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U 3
s (7)
0

Yy (6.33)

u, U \&?

‘Z‘i,f,(i) (6.34) /173
L, 7N

Substituting relationships (6.33) and (6.34) into formula (6.28)
and making the necessary transformations, we obtain the final ex-
pression for the critical Reynolds number

2
R =R, + L AGED

(_d_)"’ (6.35)
o

(@)
Figure 58 shows the curves of the function Q(£1)== o .

5
o 1

[+ (@)}

If the surface of the bedy is a smooth one, for the given

turbulence of the leading flow the difference Ri* - R%* is propor-

tional to the value (fg + f)1/2 of (6.35). At the same time accord-
ing to the data of reference [45], if we take into account the
relationship of the lowest critical Reynolds number and the shape
factor f, the above-mentioned difference is proportional to the

value (fg + f)2/3. cComparison of the results of the calculations
with experimental data (Fig. 59) show that formula (6.35) corresponds
more precisely to reality.

Equation (6.35) includes the two constant values 4 and B the
values of which could not be determined theoretically. Analysis of
experimental data [59, 60] showed that 4 = 0.22 and B = 0.21.

To verify the semi-empirical formula (6.35) we compared the
results of calculations and experiments [60] on an elliptical cyl-
. . . . . a .
inder with a semi-axis ratio 7 3. The calculated and experimental
data agree satisfactorily (Fig. 60).

In practical calculations the turbulence scale is not always
known, since its determination requires very accurate and time-

consuming measurements. Equation (6.35) includes this value to the
1/4 power, so that even with significant changes in its value the
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critical Reynolds number varies very little. The value of the func-
tions Q and (Zg)l/z in calculations of the transition point also

vary insignificantly.

20
P (e \ /174

e ® I 005 - N ot
\\ . 3
- o
\ °
200 — N\ ol A INUUN o

i \ N o\
100 U A L o2 b a
X

0 005 b M 13 15 ES
Fig. 59. Comparison of the Com- Fig. 60. Comparison of the Re-
puted Function Ri* - R%* with sults of Calculations of the

. . Transition Point with Experimen-
Experimental Data: Accord- tal Data: the Calculation
ing to Formula (6.35); +++++ Ac- )

According to Formula (6.35); o

cording to the Data of L4515 o Shows the Experimental Data.

Shows the Experimental Data.

Comparison of the calculated and experimental data shows that /175
we can take

]
A(-q:—;l—’)49"‘=2.0; (6.36)
A/ Ud .
E‘(T >=2250.

(6.37)

Then formula (6.32) is significantly simplified and reduced to the
form

1
“w . C ?
Ry SEEDT
— d 2
84+D(_7,_ (6.38)
84
which is very convenient for practical use. The constants ¢ and D

in formula (6.38) are equal to 1.88 and 0.25:1073 respectively.
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The critical Reynolds number Ri* for a plate as a function of

the degree of turbulence and the surface roughness parameter

1
- ~0,0807C
Rpp 2285+ LEYEY (6.39)
< +0(57)

are shown in Figure 61.

The calculated and experimental values of the critical Reynolds
numbers as a function of the degree of turbulence of the leading
flow are shown in Figure 62. We can consider the agreement to be
completely satisfactory after we exclude the portion of the curve
corresponding to an insignificant (not more than 0.1%) level of
turbulence in the leading flow.

Figure 63 shows the calculated and experimental values of the
critical Reynolds numbers for a body with a different surface rough-
ness (6.38). Experiments were conducted with low (e = 0.15%) and
comparatively high (e = 0.5-0.6%) levels of turbulence in the lead-
ing flow. Comparison shows a satisfactory correlation of results
computed according to formula (6.38) and experimental data, except
for the case of small values of turbulence and surface roughness
(e £ 0.15%). The reason for the discrepancy in this case is the
unsuitability of the transition scheme used in this discussion for /176
very small velocity perturbations, arising in the boundary layer
due to turbulence of the leading flow or roughmness of the surface
of the body.

It is interesting to note that a comparison of the obtained
data with the graphs of calculations of the transition points,
presented in references [68, 69, 90] shows a correlation between
the above mentioned graphs and formula (6.38) with ¢ = 0.15-0.35%.
This fact is additional confirmation of the validity of formula
(6.38), since the experimental data used to compare these graphs
were obtained in the designated interval of the level of turbulence
of the leading flow.

Substituting expressions (3.43), (3.47) and (6.3) into formula
(6.38), after simple algebraic transformations we obtain the final
expression for determining the critical Reynolds number at the
transition point [25]:

1
Ez__k)t--__ i]’—
m m

*+0(5z)

R, =exp(4, — B,H) +

- =

(6.405

FS
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Fig. 61. The Critical Reynolds Number for a Plate as a Function of
the Level of Initial Turbulence and the Roughness Parameter.

.- Fig. 62, Comparison of the Experimental

t Values of the Critical Reynolds Number

1000 1! with the Calculated Values: the Cal-
i& 02 culation ccording to Formula (6.38);

(1) According to the Experiments of
v 4 (10515 (2) According to the Experiments
(\ of [59]; (3) According to the Experi-

M 3

_ ments of [71]; (4) According to the
y Experiments of [126].

600

\\‘ﬁ§-h Knowing the critical Reynolds

ﬂwa > number at the transition point, we can
“ 6 compute from equation (6.24) the opti-
mal distribution of the rate of suction
from the boundary layer, and then by any known method we can compute
all the remaining characteristics of a boundary layer and the pro-
file drag of the body.

To satisfy the condition that the local Reynolds number be
equal to its critical value at the transition point, computations
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Fig. 63. Comparison of Calculated and Experimental Values of the

Local Critical Reynolds Numbers at the Transition Point: the
Calculations According to Formula (6.35); U - According to the

Experiments of [108]; @ - According to the Experiments of Fiendt [56].

should be made by the method of successive approximations. In the /178
first approximation we should ignore the longitudinal pressure

gradient on the outer boundary of the boundary layer and determine

by formula (6.24) the distribution of the optimal suction rate along

the contour of the body. In the second approximation the values of

ale ole d
Rt and m

tion detePmined in the first approximation. Repeating the process
of successive approximations, we can compute with the required ac-
curacy the distribution of the optimal suction rate and also all the
remaining characteristics of a boundary layer and the profile drag
of the body. Practical calculations showed that for a body with a
ratio of length to greatest width of more than seven, the second

and third approximations are practically the same.

become more precise, allowing for the law of fluid suc-

Optimal Suction of the Boundary Layer of a Plate

For the particular case of a porous plate, expressions (6.21)
and (6.24) can be reduced to an integral expontential function,
detailed tables of which are presented in reference [18]. Later,
when examining the particular case of a plate we will use a rec- /179

tangular system of coordinates. The origin will be placed at the
leading edge of the plate, the x axis directed along the surface
of the plate and the y axis normal to that surface. The equation
of the zero-th moment (6.14) in this case can be written in the
form of the integral relationship
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T
x;w—m@¢w—f, (6.41)

Q.] o
By §

where U is the velocity of the leading flow; vy is the local suction
rate; 19 is the friction stress on the surface of the plate; p is
the density of the fluid.

We will use the following values:

R = Uf. and Rx==%% local Reynolds numbers
= Ufh suction parameter
Q::i&; dimensionless coefficient of local friction
where §%%* is the thickness of the impulse loss of the boundary

layer, v is the kinematic modulus of fluid viscosity.

Then we convert relationship (6.41) to the form

~ dR™ | -

When calculating the lowest critical Reynolds numbers by the
method of small perturbations, scientists usually investigate the
stability of the fluid flow in the laminar boundary layer. This
method of investigation is very time consuming. We can take advan-
tage of the fact that the influence of various laws of suction rate
distribution along the plate on the loss of stability of the flow
in a laminar boundary layer can be brought into line by using the
shape factor H. The value of the lowest critical Reynolds number
can be computed using the approximate formula (6.3) in which for
the case of a plate we should take 4 = 31.3 and B = 10.

Using a system of equations in three moments with an arbitrary /180

distribution of the suction rate along a porous plate for ¢ and H,
we obtain the approximate formulas

s (6.43)
(6.u44)

where gy = 0.22; d = 0.56; Hg = 2.59 and ¢ = 1.18 (constant values)
and €%% < 0,
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Comparison of the results of calculations according to formulas
(6.43) - (6.44) with the data of numerical integration of the dif-
ferential equations for a laminar boundary layer on calculating
machines [16] showed that with ¢%% = 0-0.5, the maximum error in
formula (6.43) does not exceed about 3% and in formula (6.44) it
does not exceed 1%.

Substituting formulas (6.43) - (6.44) into equation (6.42)
and separating the variables, we obtain the ordinary differential
equation

expI2(a— Hib—bet™) 4 _

— b = )
( %) §0—(d+l)t" dR;. (6.45)

Integrating equation (6.45) with the help of the change of variable

2bct .
=-Uq§%——20d with the boundary conditions t*% = 0, Rp = Rp,, we

obtain
be , bet,
R,Y—R;, =—mexp[2 (a—Hob— m)] X

N 2bcL, - 2bcl, } (6.46)
XlEi (d_-l—-T—Qth )-—E1 (m) >

where EF; is an integral exponential function®.

Since [99] HZ* = 225, it is easy to obtain that Rxo = 0.115-10°6,
After computing the function Rx(t**), using the graphic function
R**//ﬁ; from t%% [16], we can determine the coefficient of local
discharge,

Lo
U

t..
TR (6.47)

Figure 64 shows a comparision of the functions obtained by dif- /181
ferent authors for the rate of optimal suction on a porous plate

on
vo/Ugp with various values of the Reynolds number Rx = where
Uy is the velocity of the leading flow. Comparison of the curves

Detailed tables of the integral exponential functions are given
in reference [8], these tables are recommended for use in practical
calculations.
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shows a satisfactory correlation of the results of calculations
according to the proposed formula with the data from reference [125].
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64, The Optimal Suc-
tion of a Boundary Layer
of a Porous Plate as a
Function of the Reynold
er: (1) According to

; (2) According to

1; (3) According to

1.

the final form we obtain

The drag coefficient of lami-
nar friction with optimal suction
of a boundary layer on a porous
plate can be computed by the form-
ula

x Ry
2 ‘nﬂx Yo
4 0o -2 -EEdR (6.48)
f Qng R‘ t“ ¢ 34 .

which with the help of expression
(6.44) can be converted to the form

Ry Ry
26, rdR, 2d 7T v,
b=t | TR TR (6n)

]

Taking into account that for R, = /182

Ryggs %% = 0 and R%*%* = 0.664VF;, in
— RX RX
L e 1,328VR,C,+ 0,44 j‘de . 1é12 Ygg_de
y R R e .
x X Rx. X kx. [}] (6 . 50)

Both the integrals in formula (6.50) were determined by graphic
integration using function (6.46). In this case, we considered that

Q(O
Ug — 77

Table 13 shows the results of calculations according to formula
(6.50) of the drag coefficient of laminar friction with optimal
suction of the boundary layer.

For practical calculations it is necessary to compute the coef-
determined by the formula

ficient of total discharge,
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TABLE 13. THE DRAG COEFFICIENTS AND THE DISCHARGE OF SUCKED-OFF
FLUID AS A FUNCTION OF THE LOCAL REYNOLDS NUMBER FOR THE CASE OF A
PLATE. e E e - - w0 e =
by a
Fou 'd+—?
B0 2 N ET:H
S 1 E-| < Eolse| one
o . 2 9O 'o ."E‘l 8 8 15} 5 C:'S
Lo =z @ = o~ O m,
g & O— 797 RN I mg: .
2| %50 topo. B hOol2ol &5l 1 e
3 ::‘:D "o Sl S e slso o -':. Ol .f. =
ﬁiﬁ R b riffﬁ $J%Ef F+ ,}SmﬁL; S
0,115 3,920 4,220 4,360 3,920 7,100 0 !(;
1,00 1,338 1,471 1,680 1,328 4,450 70 0,216
10,0 0,683 0,590 0,736 0,421 3,100 78 1,552
100 0,340 0,332 0,450 0,133 2,131 84 1,206
We will now examine in more detail the particular case of
optimal suction of a boundary layer on a plate taking into account

initial turbulence and surface roughness. In this case the basic
calculating formulas are significantly simplified and take the
form [25] 1

/183

C, fi(H-—]{)?
R —exp(A—-BH)—}——%—f—s RY fo—" Db

40 (57) o)

- d+1 . 2d+D 0 -2

7=2( 4 H)—ﬁ——*—H (R — R.) 4 R; ;
' [ - ‘ 0 ¢ J (6.53)

Uy V¥ 1 1 dR***  a 1

TU~U'B—2 R™ “dx ~ B=2 R*’ (6.51)

These formulas allow us to carry out the necessary computations.
Figure 65-67 show the optimal distribution of the rate of suction
of the fluid from the boundary layer of a plate as a function of
the Reynolds number R, for various values of the initial turbulence
of the leading flow and surface roughness. From an analysis of the
data shown in these graphs, it follows that the optimal distribution
of the rate of suction of the fluid from the boundary layer of a
perous plate and the total discharge of sucked-off fluid vary to a
significant degree with the initial turbulence and the surface rough-
ness of the body.

With low initial turbulence of the flow (e = 0.2%) (Fig. 65)
the value of the surface roughness exerts a significant influence
on the optimal suction. In this case the required gquantity of
sucked-off fluid increases in proportion to the increase in rough-
ness. With significant initial turbulence (¢ 2%) (Fig. 66)
variation in the surface roughness does not exert a significant
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influence on the optimal suction of the boundary layer.

The distribution of the rate of suction of the fluid from the
boundary layer of a permeable plate as a function of the Reynolds
number R, and the initial turbulence for the case of an absolutely
smooth surface (4 = 0) is shown in Figure 67 (the broken line shows
the data of Pretsch). It follows from Figure 67 that the optimal
distribution of the rate of suction of the fluid from the boundary
layer of a permeable plate and the total discharge of sucked-off
fluid vary to a significant degree with the initial turbulence.
Thus for example, the maximum value of the dimensionless rate of

optimal suction of the fluid with an initial turbulence e = 2% is
v - . o e s
72 = 1.24°10 ”, and with an initial turbulence € = 0.2% the cor-
0
responding value is equal to 0.56-10""%, It is natural that as the

initial turbulence decreases, the required discharge of fluid sucked
from the boundary layer across the permeable surface of a plate
decreases.

v, ¢
2
u,,’”

Fig. 65. Optimal Distribution of the Suction Rate for a Plate with
Various Surface Roughnesses (1) —i;—z by (2) == = 23 (3) —%T = 1.
XS 63" 53ﬂ

-

d

The numerical values of the coefficients of friction drag for
a plate with optimal suction of a laminar boundary layer as a func-
tion of the Reynolds number R, with various initial turbulences and
surface roughnesses are shown in Figure 68. From these data if
follows that laminarization of the boundary layer of a plate by
suction of a fluid across the permeable surface allows us to decrease
significantly the hydrodynamic resistance.
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Fig. 66. Optimal Distribution of the Suction Rate for a Plate with

Various Surface Roughnesses.

£4a‘——-

0 . } B A .
10° 107 R,
Fig. 67. Optimal Distribution of the Suction Rate for a Plate with
a Smooth Surface with Various Initial Turbulences in the Flow.
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The Coefficient of Friction Resistance as a Function of

the Reynolds Number for Various Surfaces Roughnesses and Initial

68.

Fig.
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(1) Optimal Suction with €
(3) the Laminar Boundary Layer According to

Turbulences of the Flow:
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(4) A Turbulent Boundary Layer According to Prandtl-
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